ABSTRACT
The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.
Subject(s)
Bone Diseases , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Zebrafish , Tuberculosis/microbiology , Macrophages/microbiology , Bacterial Proteins/geneticsABSTRACT
Quenching digestions in proteomics prior to analysis is routine in order to eliminate residual protease activity. Residual activity leads to overdigestion, nonspecific star-activity, and back-exchange in isotopic 18O quantitation. Chemical and isobaric labeling (e.g., TMT/iTRAQ) of proteins or peptides for mass spectrometry-based proteomics is generally incompatible with ubiquitous postdigestion acidification. This necessitates buffer exchange and pH adjustments. We demonstrate that quenching is unnecessary with peptides generated from protein filter-traps, as trypsin activity and intact trypsin are negligible in the eluate from these preparations. Labeling can be directly performed on enzymatic digests from these methods, improving recovery, throughput, and ease of automation.
Subject(s)
Proteomics , Trypsin , Trypsin/metabolism , Trypsin/chemistry , Proteomics/methods , Isotope Labeling/methods , Filtration , Peptide Fragments/analysis , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Mass Spectrometry/methods , Humans , Hydrogen-Ion Concentration , Animals , Peptides/chemistry , Peptides/analysisABSTRACT
Organs in the abdominal cavity are covered by a peritoneal membrane, which is comprised of a monolayer of mesothelial cells (MC). Diseases involving the peritoneal membrane include peritonitis, primary cancer (mesothelioma), and metastatic cancers (ovarian, pancreatic, colorectal). These diseases have gender- and/or age-related pathologies; however, the impact of gender and age on the peritoneal MC is not well evaluated. To address this, we identified and characterized gender- and age-related differences in the proteomes of murine primary peritoneal MC. Primary peritoneal MC were isolated from young female (FY) or male (MY) mice (3-6 months) and aged female (FA) or male (MA) mice (20-23 months), lysed, trypsin digested using S-Traps, then subjected to bottom-up proteomics using an LC-Orbitrap mass spectrometer. In each cohort, we identified >1000 protein groups. Proteins were categorized using Gene Ontology and pairwise comparisons between gender and age cohorts were conducted. This study establishes baseline information for studies on peritoneal MC in health and disease at two physiologic age/gender points. Segregation of the data by gender and age could reveal novel factors to specific disease states involving the peritoneum. [This in vitro primary cell model has utility for future studies on the interaction between the mesothelium and foreign materials.].
ABSTRACT
The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis (1, 2). Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection (3-5). The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure PDIM and PGL-dependent protein secretion in M. marinum , a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals (6, 7). Importantly, M. marinum is a well-established model for mycobacterial pathogenesis (8, 9). Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups (10). Loss of PDIM differentially impacted secretion of Groups III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggests that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.
ABSTRACT
N-terminal acetylation in Mycobacterium tuberculosis is correlated with pathogenic activity. We used genomics and bottom-up proteomics to identify protein Emp1 as the sole acetyltransferase responsible for acetylation of EsxA, a known virulence factor. Using custom data analysis, we screened the proteome to identify 22 additional putative substrates of Emp1.
ABSTRACT
Phagosomal lysis is a key aspect of mycobacterial infection of host macrophages. Acetylation is a protein modification mediated enzymatically by N-acetyltransferases (NATs) that impacts bacterial pathogenesis and physiology. To identify NATs required for lytic activity, we leveraged Mycobacterium marinum, a nontubercular pathogen and an established model for M. tuberculosis. M. marinum hemolysis is a proxy for phagolytic activity. We generated M. marinum strains with deletions in conserved NAT genes and screened for hemolytic activity. Several conserved lysine acetyltransferases (KATs) contributed to hemolysis. Hemolysis is mediated by the ESX-1 secretion system and by phthiocerol dimycocerosate (PDIM), a virulence lipid. For several strains, the hemolytic activity was restored by the addition of second copy of the ESX-1 locus. Using thin-layer chromatography (TLC), we found a single NAT required for PDIM and phenolic glycolipid (PGL) production. MbtK is a conserved KAT required for mycobactin siderophore synthesis and virulence. Mycobactin J exogenously complemented PDIM/PGL production in the Δ mbtK strain. The Δ mbtK M. marinum strain was attenuated in macrophage and Galleria mellonella infection models. Constitutive expression of either eis or papA5, which encode a KAT required for aminoglycoside resistance and a PDIM/PGL biosynthetic enzyme, rescued PDIM/PGL production and virulence of the Δ mbtK strain. Eis N-terminally acetylated PapA5 in vitro , supporting a mechanism for restored lipid production. Overall, our study establishes connections between the MbtK and Eis NATs, and between iron uptake and PDIM and PGL synthesis in M. marinum . Our findings underscore the multifunctional nature of mycobacterial NATs and their connection to key virulence pathways. Significance Statement: Acetylation is a modification of protein N-termini, lysine residues, antibiotics and lipids. Many of the enzymes that promote acetylation belong to the GNAT family of proteins. M. marinum is a well-established as a model to understand how M. tuberculosis causes tuberculosis. In this study we sought to identify conserved GNAT proteins required for early stages of mycobacterial infection. Using M. marinum, we determined that several GNAT proteins are required for the lytic activity of M. marinum. We uncovered previously unknown connections between acetyl-transferases required for iron uptake and antimicrobial resistance, and the production of the unique mycobacterial lipids, PDIM and PGLOur data support that acetyl-transferases from the GNAT family are interconnected, and have activities beyond those previously reported.
ABSTRACT
The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis. Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection. The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure phthiocerol dimycocerosate (PDIM)- and phenolic glycolipid (PGL)-dependent protein secretion in M. marinum, a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals. Importantly, M. marinum is a well-established model for mycobacterial pathogenesis. Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups. Loss of PDIM differentially impacted secretion of Group III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggest that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.IMPORTANCEMycobacterium tuberculosis, the cause of human tuberculosis, killed an estimated 1.3 million people in 2022. Non-tubercular mycobacterial species cause acute and chronic human infections. Understanding how these bacteria cause disease is critical. Lipids in the cell envelope are essential for mycobacteria to interact with the host and promote disease. Strains lacking outer lipids are attenuated for infection, but the reasons are unclear. Our research aims to identify a mechanism for attenuation of mycobacterial strains without the PDIM and PGL outer lipids in M. marinum. These findings will enhance our understanding of the importance of lipids in pathogenesis and how these lipids contribute to other established virulence mechanisms.
Subject(s)
Bacterial Proteins , Glycolipids , Mycobacterium marinum , Virulence Factors , Mycobacterium marinum/pathogenicity , Mycobacterium marinum/genetics , Mycobacterium marinum/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Glycolipids/metabolism , Virulence , Lipids , Antigens, Bacterial/metabolism , Antigens, Bacterial/geneticsABSTRACT
Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 µM) include PBPs (PBP1a, KD = 0.07 µM; PBP5 = 0.4 µM); other lytic transglycosylases (SltB2, KD = 0.09 µM; RlpA, KD = 0.4 µM); a type VI secretion system effector (Tse5, KD = 0.3 µM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 µM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Periplasm/metabolism , Periplasm/enzymology , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Proteins/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Peptidoglycan/metabolism , Peptidoglycan/chemistryABSTRACT
Complete enzymatic digestion of proteins for bottom-up proteomics is substantially improved by use of detergents for denaturation and solubilization. Detergents however, are incompatible with many proteases and highly detrimental to LC-MS/MS. Recently; filter-based methods have seen wide use due to their capacity to remove detergents and harmful reagents prior to digestion and mass spectrometric analysis. We hypothesized that non-specific protein binding to negatively charged silica-based filters would be enhanced by addition of lyotropic salts, similar to DNA purification. We sought to exploit these interactions and investigate if low-cost DNA purification spin-filters, 'Minipreps,' efficiently and reproducibly bind proteins for digestion and LC-MS/MS analysis. We propose a new method, Miniprep Assisted Proteomics (MAP), for sample preparation. We demonstrate binding capacity, performance, recovery and identification rates for proteins and whole-cell lysates using MAP. MAP recovered equivalent or greater protein yields from 0.5-50 µg analyses benchmarked against commercial trapping preparations. Nano UHPLC-MS/MS proteome profiling of lysates of Escherichia coli had 99.3% overlap vs. existing approaches and reproducibility of replicate minipreps was 98.8% at the 1% FDR protein level. Label Free Quantitative proteomics was performed and 91.2% of quantified proteins had a %CV <20% (2044/2241). Miniprep Assisted Proteomics can be performed in minutes, shows low variability, high recovery and proteome depth. This suggests a significant role for adventitious binding in developing new proteomics sample preparation techniques. MAP represents an efficient, ultra-low-cost alternative for sample preparation in a commercially obtainable device that costs â¼$0.50 (USD) per miniprep.
Subject(s)
Proteome , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Proteome/analysis , Proteome/chemistry , Proteome/metabolism , Detergents/analysis , Proteomics/methods , Reproducibility of Results , Escherichia coli , DNAABSTRACT
IMPORTANCE: N-terminal acetylation is a protein modification that broadly impacts basic cellular function and disease in higher organisms. Although bacterial proteins are N-terminally acetylated, little is understood how N-terminal acetylation impacts bacterial physiology and pathogenesis. Mycobacterial pathogens cause acute and chronic disease in humans and in animals. Approximately 15% of mycobacterial proteins are N-terminally acetylated, but the responsible enzymes are largely unknown. We identified a conserved mycobacterial protein required for the N-terminal acetylation of 23 mycobacterial proteins including the EsxA virulence factor. Loss of this enzyme from M. marinum reduced macrophage killing and spread of M. marinum to new host cells. Defining the acetyltransferases responsible for the N-terminal protein acetylation of essential virulence factors could lead to new targets for therapeutics against mycobacteria.
Subject(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Humans , Animals , Virulence , Mycobacterium marinum/metabolism , Acetylation , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolismABSTRACT
N-terminal protein acetylation is a ubiquitous post-translational modification that broadly impacts diverse cellular processes in higher organisms. Bacterial proteins are also N-terminally acetylated, but the mechanisms and consequences of this modification in bacteria are poorly understood. We previously quantified widespread N-terminal protein acetylation in pathogenic mycobacteria (C. R. Thompson, M. M. Champion, and P.A. Champion, J Proteome Res 17(9): 3246-3258, 2018, https:// doi: 10.1021/acs.jproteome.8b00373). The major virulence factor EsxA (ESAT-6, Early secreted antigen, 6kDa) was one of the first N-terminally acetylated proteins identified in bacteria. EsxA is conserved in mycobacterial pathogens, including Mycobacterium tuberculosis and Mycobacterium marinum, a non-tubercular mycobacterial species that causes tuberculosis-like disease in ectotherms. However, enzyme responsible for EsxA N-terminal acetylation has been elusive. Here, we used genetics, molecular biology, and mass-spectroscopy based proteomics to demonstrate that MMAR_1839 (renamed Emp1, ESX-1 modifying protein, 1) is the putative N-acetyl transferase (NAT) solely responsible for EsxA acetylation in Mycobacterium marinum. We demonstrated that ERD_3144, the orthologous gene in M. tuberculosis Erdman, is functionally equivalent to Emp1. We identified at least 22 additional proteins that require Emp1 for acetylation, demonstrating that this putative NAT is not dedicated to EsxA. Finally, we showed that loss of emp1 resulted in a significant reduction in the ability of M. marinum to cause macrophage cytolysis. Collectively, this study identified a NAT required for N-terminal acetylation in Mycobacterium and provided insight into the requirement of N-terminal acetylation of EsxA and other proteins in mycobacterial virulence in the macrophage.
ABSTRACT
The 11 lytic transglycosylases of Pseudomonas aeruginosa have overlapping activities in the turnover of the cell-wall peptidoglycan. Rare lipoprotein A (RlpA) is distinct among the 11 by its use of only peptidoglycan lacking peptide stems. The spatial localization of RlpA and its interactome within P. aeruginosa are unknown. We employed suppression of introduced amber codons at sites in the rlpA gene for the introduction of the unnatural-amino-acids Νζ -[(2-azidoethoxy)carbonyl]-l-lysine (compound 1) and Nζ -[[[3-(3-methyl-3H-diazirin-3-yl)propyl]amino]carbonyl]-l-lysine (compound 2). In live P. aeruginosa, full-length RlpA incorporating compound 1 into its sequence was fluorescently tagged using strained-promoted alkyne-azide cycloaddition and examined by fluorescence microscopy. RlpA is present at low levels along the sidewall length of the bacterium, and at higher levels at the nascent septa of replicating bacteria. In intact P. aeruginosa, UV photolysis of full-length RlpA having compound 2 within its sequence generated a transient reactive carbene, which engaged in photoaffinity capture of neighboring proteins. Thirteen proteins were identified. Three of these proteins-PBP1a, PBP5, and MreB-are members of the bacterial divisome. The use of the complementary methodologies of non-canonical amino-acid incorporation, photoaffinity proximity analysis, and fluorescent microscopy confirm a dominant septal location for the RlpA enzyme of P. aeruginosa, as a divisome-associated activity. This accomplishment adds to the emerging recognition of the value of these methodologies for identification of the intracellular localization of bacterial proteins.