Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Cell ; 74(3): 466-480.e4, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30930055

ABSTRACT

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.


Subject(s)
DNA Topoisomerases, Type II/genetics , Herpesvirus 1, Human/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-akt/genetics , Virus Latency/genetics , Animals , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Herpesvirus 1, Human/pathogenicity , Humans , MRE11 Homologue Protein/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Neurons/metabolism , Neurons/virology , Phosphorylation , Rats , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
2.
EMBO Rep ; 23(2): e53543, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34842321

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.


Subject(s)
Antigens, Differentiation/metabolism , Herpesvirus 1, Human , Neurons/virology , Virus Activation , Virus Latency , Gene Expression Regulation , Herpesvirus 1, Human/physiology , Humans , In Situ Hybridization, Fluorescence , Transcriptome
3.
Angew Chem Int Ed Engl ; 62(29): e202305679, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37218528

ABSTRACT

The activation of the α-C-H bond of ketones typically requires an amine and a directing group to guide the reaction selectivity in amine-catalysis carbonyl chemistry. For an α-C-H bond activation of ketone, directing groups are also required to control the reaction selectivity. Reported herein is the first α-alkylation of cyclic ketones in the absence of an amine catalyst and directing group. 1 H NMR, XPS, EPR studies and DFT calculations indicate that an α-carbon radical intermediate is formed through direct and selective activation of the inert α-C-H bond of ketones chelating on the surface of colloidal quantum dots (QDs). Such an interaction is essential for weakening the C-H bond, as exemplified, using CdSe QDs as the sole photocatalyst to execute α-C-H alkylation of cyclic ketones under visible-light irradiation. Without an amine catalyst and directing group, the high step- and atom-economy transformation under redox-neutral condition opens a new way for α-C-H functionalization of ketones in carbonyl chemistry.

4.
J Biol Chem ; 291(12): 6396-411, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26797132

ABSTRACT

Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes.


Subject(s)
Integrases/physiology , RNA Polymerase III/metabolism , Retroelements , Saccharomyces cerevisiae/genetics , Integrases/chemistry , Mutagenesis, Insertional , Protein Binding , Protein Interaction Domains and Motifs , Protein Subunits/metabolism , RNA Polymerase III/chemistry , RNA Polymerase III/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
5.
Front Mol Neurosci ; 16: 1179209, 2023.
Article in English | MEDLINE | ID: mdl-37456526

ABSTRACT

Classic experiments with peripheral sympathetic neurons established an absolute dependence upon NGF for survival. A forgotten problem is how these neurons become resistant to deprivation of trophic factors. The question is whether and how neurons can survive in the absence of trophic support. However, the mechanism is not understood how neurons switch their phenotype to lose their dependence on trophic factors, such as NGF and BDNF. Here, we approach the problem by considering the requirements for trophic support of peripheral sympathetic neurons and hippocampal neurons from the central nervous system. We developed cellular assays to assess trophic factor dependency for sympathetic and hippocampal neurons and identified factors that rescue neurons in the absence of trophic support. They include enhanced expression of a subunit of the NGF receptor (Neurotrophin Receptor Homolog, NRH) in sympathetic neurons and an increase of the expression of the glucocorticoid receptor in hippocampal neurons. The results are significant since levels and activity of trophic factors are responsible for many neuropsychiatric conditions. Resistance of neurons to trophic factor deprivation may be relevant to the underlying basis of longevity, as well as an important element in preventing neurodegeneration.

6.
Methods Mol Biol ; 2060: 263-277, 2020.
Article in English | MEDLINE | ID: mdl-31617183

ABSTRACT

We describe a primary neuronal culture system suitable for molecular characterization of herpes simplex virus type 1 (HSV-1) infection, latency, and reactivation. While several alternative models are available, including infections of live animal or explanted ganglia, these are complicated by the presence of multiple cell types, including immune cells, and difficulties in manipulating the neuronal environment. The highly pure neuron culture system described here can be readily manipulated and is ideal for molecular studies that focus exclusively on the relationship between the virus and host neuron, the fundamental unit of latency. As such this model allows for detailed investigations of both viral and neuronal factors involved in the establishment and maintenance of HSV-1 latency and in viral reactivation induced by defined stimuli.


Subject(s)
Cell Culture Techniques , Herpesvirus 1, Human/physiology , Neurons , Virus Activation/physiology , Virus Latency/physiology , Animals , Cells, Cultured , Neurons/metabolism , Neurons/pathology , Neurons/virology , Rats , Rats, Sprague-Dawley
7.
Mol Cell Biol ; 35(16): 2831-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26055328

ABSTRACT

The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation.


Subject(s)
RNA Polymerase III/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factor TFIIIB/chemistry , Transcription Factor TFIIIB/metabolism , Transcriptional Activation , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Gene Expression Regulation, Fungal , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Interaction Maps , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA Polymerase III/chemistry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL