Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Mol Ther Oncol ; 32(1): 200759, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596298

ABSTRACT

The balance between T helper 1 (Th1) and T helper 2 (Th2) has a critical function in determining intratumoral immune response and anti-PD-1 immunotherapy. The level of maternal embryonic leucine zipper kinase (MELK) is reported to correlate with infiltration of immune cells in cancers, but the underlying molecular mechanism is not clarified. In the present study, we aimed to elucidate the potential function of MELK in cervical cancer. We found that MELK was upregulated and played an oncogenic role in cervical cancer. MELK overexpression shifted Th1/Th2 balance toward Th2 predisposition in mouse cervical tumors in vivo and naive T cells from human PBMCs in vitro, whereas MELK knockdown exhibited opposite effects. MELK overexpression activated NF-κB signaling and promoted IL-6 secretion by cervical cancer cells. Depletion of IL-6 by neutralization antibodies abrogated the influence of MELK on Th1/Th2 balance. In addition, MELK modulated the antitumor activity of cytotoxic CD8+ T cells in cervical tumors, but depletion of Th2 cells by IL-4 neutralization abrogated this effect. Finally, MELK overexpression conferred tolerance to PD-1 blockade in cervical tumors, whereas targeting MELK by OTSSP167 significantly enhanced PD-1 blockade efficiency. Our data elucidated a novel role of MELK in regulating Th1/Th2 balance and anti-PD-1 immunotherapy in cervical cancer.

2.
J Nephrol ; 37(4): 1063-1075, 2024 May.
Article in English | MEDLINE | ID: mdl-38594600

ABSTRACT

BACKGROUND: Nutcracker syndrome is a disease characterized by complex symptoms, making its diagnosis challenging and often delayed, often resulting in a painful experience for the patients. OBJECTIVE: This study aimed to investigate the pathogenesis of nutcracker syndrome through the perspective of hemodynamics by simulating blood flow with varying compression degrees of the left renal vein. METHODS: 3D patient-specific vascular models of the abdominal aorta, superior mesenteric artery and left renal vein were constructed based on CT images of patients suspected of having nutcracker syndrome. A hemodynamic simulation was then conducted using computational fluid dynamics to identify the correlation between alterations in hemodynamic parameters and varying degrees of compression. RESULTS: The study indicated the presence of an evident gradient in velocity distribution over the left renal vein with relatively high degrees of stenosis (α ≤ 50°), with maximum velocity in the central region of the stenosis. Additionally, when the compression degree of the left renal vein increases, the pressure distribution of the left renal vein presents an increasing number of gradient layers. Furthermore, the wall shear stress shows a correlation with the variation of blood flow velocity, i.e., the increase of wall shear stress correlates with the acceleration of the blood flow velocity. CONCLUSIONS: Using computational fluid dynamics as a non-invasive instrument to obtain the hemodynamic characteristics of nutcracker syndrome is feasible and could provide insights into the pathological mechanisms of the nutcracker syndrome supporting clinicians in diagnosis.


Subject(s)
Hemodynamics , Renal Nutcracker Syndrome , Renal Veins , Humans , Renal Nutcracker Syndrome/physiopathology , Renal Nutcracker Syndrome/diagnostic imaging , Renal Veins/physiopathology , Renal Veins/diagnostic imaging , Blood Flow Velocity , Aorta, Abdominal/physiopathology , Aorta, Abdominal/diagnostic imaging , Mesenteric Artery, Superior/physiopathology , Mesenteric Artery, Superior/diagnostic imaging , Models, Cardiovascular , Hydrodynamics , Male , Female , Adult , Patient-Specific Modeling , Stress, Mechanical , Imaging, Three-Dimensional , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL