Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Mol Cell Proteomics ; 23(1): 100686, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38008179

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, ranking fourth in frequency. The relationship between metabolic reprogramming and immune infiltration has been identified as having a crucial impact on HCC progression. However, a deeper understanding of the interplay between the immune system and metabolism in the HCC microenvironment is required. In this study, we used a proteomic dataset to identify three immune subtypes (IM1-IM3) in HCC, each of which has distinctive clinical, immune, and metabolic characteristics. Among these subtypes, IM3 was found to have the poorest prognosis, with the highest levels of immune infiltration and T-cell exhaustion. Furthermore, IM3 showed elevated glycolysis and reduced bile acid metabolism, which was strongly correlated with CD8 T cell exhaustion and regulatory T cell accumulation. Our study presents the proteomic immune stratification of HCC, revealing the possible link between immune cells and reprogramming of HCC glycolysis and bile acid metabolism, which may be a viable therapeutic strategy to improve HCC immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Proteome , Proteomics , Tumor Microenvironment , Bile Acids and Salts
2.
Nucleic Acids Res ; 52(D1): D690-D700, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897361

ABSTRACT

The Animal Meta-omics landscape database (AnimalMetaOmics, https://yanglab.hzau.edu.cn/animalmetaomics#/) is a comprehensive and freely available resource that includes metagenomic, metatranscriptomic, and metaproteomic data from various non-human animal species and provides abundant information on animal microbiomes, including cluster analysis of microbial cognate genes, functional gene annotations, active microbiota composition, gene expression abundance, and microbial protein identification. In this work, 55 898 microbial genomes were annotated from 581 animal species, including 42 924 bacterial genomes, 12 336 virus genomes, 496 archaea genomes and 142 fungi genomes. Moreover, 321 metatranscriptomic datasets were analyzed from 31 animal species and 326 metaproteomic datasets from four animal species, as well as the pan-genomic dynamics and compositional characteristics of 679 bacterial species and 13 archaea species from animal hosts. Researchers can efficiently access and acquire the information of cross-host microbiota through a user-friendly interface, such as species, genomes, activity levels, expressed protein sequences and functions, and pan-genome composition. These valuable resources provide an important reference for better exploring the classification, functional diversity, biological process diversity and functional genes of animal microbiota.


Subject(s)
Databases, Genetic , Microbiota , Multiomics , Animals , Bacteria/genetics , Genome, Microbial , Metagenome/genetics , Microbiota/genetics
3.
Nucleic Acids Res ; 51(D1): D700-D707, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36318246

ABSTRACT

CRAMdb (a database for composition and roles of animal microbiome) is a comprehensive resource of curated and consistently annotated metagenomes for non-human animals. It focuses on the composition and roles of the microbiome in various animal species. The main goal of the CRAMdb is to facilitate the reuse of animal metagenomic data, and enable cross-host and cross-phenotype comparisons. To this end, we consistently annotated microbiomes (including 16S, 18S, ITS and metagenomics sequencing data) of 516 animals from 475 projects spanning 43 phenotype pairs to construct the database that is equipped with 9430 bacteria, 278 archaea, 2216 fungi and 458 viruses. CRAMdb provides two main contents: microbiome composition data, illustrating the landscape of the microbiota (bacteria, archaea, fungi, and viruses) in various animal species, and microbiome association data, revealing the relationships between the microbiota and various phenotypes across different animal species. More importantly, users can quickly compare the composition of the microbiota of interest cross-host or body site and the associated taxa that differ between phenotype pairs cross-host or cross-phenotype. CRAMdb is freely available at (http://www.ehbio.com/CRAMdb).


Subject(s)
Databases, Factual , Microbiota , Animals , Archaea/genetics , Bacteria/genetics , Fungi/genetics , Metagenome , Metagenomics , Microbiota/genetics
4.
Bioorg Chem ; 143: 107022, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142558

ABSTRACT

Liver fibrosis remains a global health challenge due to its rapidly rising prevalence and limited treatment options. The orphan nuclear receptor Nur77 has been implicated in regulation of autophagy and liver fibrosis. Targeting Nur77-mediated autophagic flux may thus be a new promising strategy against hepatic fibrosis. In this study, we synthesized four types of Nur77-based thiourea derivatives to determine their anti-hepatic fibrosis activity. Among the synthesized thiourea derivatives, 9e was the most potent inhibitor of hepatic stellate cells (HSCs) proliferation and activation. This compound could directly bind to Nur77 and inhibit TGF-ß1-induced α-SMA and COLA1 expression in a Nur77-dependent manner. In vivo, 9e significantly reduced CCl4-mediated hepatic inflammation response and extracellular matrix (ECM) production, revealing that 9e is capable of blocking the progression of hepatic fibrosis. Mechanistically, 9e induced Nur77 expression and enhanced autophagic flux by inhibiting the mTORC1 signaling pathway in vitro and in vivo. Thus, the Nur77-targeted lead 9e may serve as a promising candidate for treatment of chronic liver fibrosis.


Subject(s)
Antifibrotic Agents , Thiosemicarbazones , Humans , Thiosemicarbazones/metabolism , Hepatic Stellate Cells , Liver/metabolism , Liver Cirrhosis/metabolism , Thiourea/metabolism , Carbon Tetrachloride
5.
BMC Vet Res ; 20(1): 43, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308297

ABSTRACT

BACKGROUND: Bovine viral diarrhea (BVD) is an acute febrile infectious disease caused by the bovine viral diarrhea virus (BVDV), which has brought huge economic losses to the world's cattle industry. At present, commercial inactivated BVDV vaccines may cause some adverse reactions during use. This study aims to develop a safer and more efficient inactivated BVDV vaccine. METHODS: Here, we described the generation and preclinical efficacy of a hydrogen peroxide (H2O2) inactivated BVDV type 1 vaccine in mice, and administered it separately with commercial vaccine (formaldehyde inactivated) in mice to study its efficacy. RESULTS: The BVDV type 1 IgG, IFN- γ, IL-4 and neutralizing antibody in the serum of the H2O2 inactivated vaccine group can be maintained in mice for 70 days. The IgG level reached its maximum value of 0.67 on the 42nd day, significantly higher than the commercial formaldehyde inactivated BVDV type 1 vaccine. IFN- γ and IL-4 reached their maximum values on the 28th day after immunization, at 123.16 pg/ml and 143.80 pg/ml, respectively, slightly higher than commercial vaccines, but the effect was not significant. At the same time the BVDV-1 neutralizing antibody titer reached a maximum of 12 Nu on the 42nd day post vaccination. CONCLUSIONS: The H2O2 inactivated BVDV vaccine has good safety and immunogenicity, which provides a potential solution for the further development of an efficient and safe BVDV vaccine.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Viral Vaccines , Animals , Cattle , Mice , Antibodies, Neutralizing , Antibodies, Viral , Diarrhea/veterinary , Formaldehyde , Hydrogen Peroxide , Immunoglobulin G , Interleukin-4 , Vaccines, Inactivated
6.
Curr Microbiol ; 81(10): 324, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180522

ABSTRACT

It turns out that the more than trillion microorganisms living in the host's digestive tract are crucial for maintaining nutrient intake, environmental suitability, and physiological mechanism. Xinjiang fine-wool sheep is an exclusive breed for wool in China, which has excellent stress tolerance. In this study, we collected feces and blood samples of 20 Xinjiang fine-wool sheep under the same genetic characteristics, the Fine-Wool Sheep (FWS) group and the Control Fine-Wool Sheep (CFWS) group were set up according to the differs in phenotypic characteristics of their wool. By 16S rRNA amplicon sequence, ITS1 region amplicons and Targeted Metabolomics, we analyzed the microbial community structure of fecal microorganisms and Short Chain Fatty Acids (SCFAs) in serum of the Xinjiang fine-wool sheep. Fecal microbial sequencing showed that the bacterial composition and structure were similar between the two groups, whereas there were significant differences in the composition and structure of the fungal community. It was also found that the abundant of Neocallimastigomycota in the intestinal fungal community of FWS was higher. In addition, the results of the serum SCFAs content analysis showed that butyric acid was significantly differences than those two groups. Correlation analysis between SCFAs and bacteria found that butyric acid metabolism had positively correlated (P < 0.05) with Ruminococcus and UCG-005. Overall, our data provide more supplement about the gut microbes community composition and structure of the Xinjiang fine-wool sheep. These results might be useful for improving gut health of sheep and taking nutritional control measure to improve production traits of animals in future.


Subject(s)
Bacteria , Fatty Acids, Volatile , Feces , Gastrointestinal Microbiome , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S , Animals , Sheep/microbiology , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , China , RNA, Ribosomal, 16S/genetics , Fatty Acids, Volatile/metabolism , Fungi/genetics , Fungi/classification , Fungi/metabolism , Wool/microbiology , Phylogeny
7.
Angew Chem Int Ed Engl ; : e202413892, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193806

ABSTRACT

Transition-metal-catalyzed hydroamination of unsaturated hydrocarbons is an appealing synthetic tool for the construction of high value-added chiral amines. Despite significant progress in the asymmetric hydroamination of alkenes, allenes, and 1,3-dienes, asymmetric hydroamination of 1,6-enynes or 1,7-enynes remains rather limited due to the enormous challenges in controlling the chemoselectivity and stereoselectivity of the reaction. Herein, we report a Ni-catalyzed chemo- and enantioselective reductive cyclization/amidation and amination of 1,6-enynes and 1,7-enynes using dioxazolones or anthranils as nitrene-transfer reagents. This mild, modular, and practical protocol provides rapid access to a variety of enantioenriched 2-pyrrolidone and 2-piperidone derivatives bearing an aminomethylene group at the 4-position in good yields (up to 83%) with excellent enantioselectivities (40 examples, up to 99% ee). Mechanistic experiments and density functional theory calculations indicate that the reaction is initiated by hydronickelation of alkynes followed by migratory insertion into alkenes, rather than by a [2+2+1] oxidative addition process of nickel to alkenes and alkynes.

8.
Anim Biotechnol ; 34(2): 218-224, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34346290

ABSTRACT

For revealing molecular markers related to the traits of multiple lumbar vertebrae in sheep, we analyze the relationship between NR6A1 gene polymorphism and lumbar vertebrae number traits in Xinjiang Kazakh sheep. Lumbar muscle tissues were collected from 6-lumbar spine (L6) Kazak sheep and 7-lumbar spine (L7) Kazak sheep and the intron-8 of NR6A1 gene was amplified by PCR. The SNP locus was detected by the PCR-SSCP method. One-Way ANOVA and an Independent Chi-square Test is adopted to analyze the genotype association with lumbar spine number variation. There were two SNP loci in the intron-8 of the NR6A1 gene: IVS8-188 and IVS8-281. One-Way ANOVA and Independent Chi-square Test indicated a significant association between IVS8-281 and lumbar spine number. The SNP locus of NR6A1 gene intron 8 (IVS8-281G > A) could play a certain role in the variation of lumbar spine number in Xinjiang Kazakh sheep and demonstrates potential to accelerate the sheep breeding of selection process.


Subject(s)
Lumbar Vertebrae , Polymorphism, Genetic , Animals , Sheep , Introns , Phenotype , Genotype
9.
Acta Pharmacol Sin ; 43(4): 829-839, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34272506

ABSTRACT

Sulforaphane (SFN) is an organic isothiocyanate and an NF-E2-related factor-2 (Nrf2) inducer that exerts prophylactic effects on depression-like behavior in mice. However, the underlying mechanisms remain poorly understood. Brain-derived neurotrophic factor (BDNF), a neurotrophin, is widely accepted for its antidepressant effects and role in stress resilience. Here, we show that SFN confers stress resilience via BDNF upregulation and changes in abnormal dendritic spine morphology in stressed mice, which is accompanied by rectifying the irregular levels of inflammatory cytokines. Mechanistic studies demonstrated that SFN activated Nrf2 to promote BDNF transcription by binding to the exon I promoter, which is associated with increased Nrf2, and decreased methyl-CpG binding protein-2 (MeCP2), a transcriptional suppressor of BDNF, in BV2 microglial cells. Furthermore, SFN inhibited the pro-inflammatory phenotype and activated the anti-inflammatory phenotype of microglia, which was associated with increased Nrf2 and decreased MeCP2 expression in microglia of stressed mice. Hence, our findings support that Nrf2 induces BDNF transcription via upregulation of Nrf2 and downregulation of MeCP2 in microglia, which is associated with changes in the morphology of damaged dendritic spines in stressed mice. Meanwhile, the data presented here provide evidence for the application of SFN as a candidate for the prevention and intervention of depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Microglia , Animals , Anti-Inflammatory Agents/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Sulfoxides
10.
Mol Plant Microbe Interact ; 34(8): 981-986, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33779267

ABSTRACT

Meloidogyne chitwoodi is one of the most devastating pests of potato in the U.S. Pacific Northwest (PNW). Nematode-infected tubers develop external as well as internal defects, making the potato tubers unmarketable, and resulting in economic losses. Draft genome assemblies of three M. chitwoodi genotypes-race 1, race 2 and race 1 pathotype Roza-were generated using Illumina and PacBio Sequel RS II sequencing. The final assemblies consist of 30, 39, and 38 polished contigs for race 1, race 2 and race 1 pathotype Roza, respectively, with average N50 of 2.37 Mb and average assembled genome size of approximately 47.41 Mb. On average, 10,508 genes were annotated for each genome. Benchmarking universal single-copy ortholog (BUSCO) analysis indicated that 69.80% of the BUSCOs were complete whereas 68.80, 0.93, and 12.67% were single copy, duplicated, and fragmented, respectively. These highly contiguous genomes will enrich resources to study potato-nematode interactions and enhance breeding efforts to develop nematode-resistant potato varieties for the PNW.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Solanum tuberosum , Tylenchoidea , Animals , Genome Size , High-Throughput Nucleotide Sequencing , Plant Breeding , Solanum tuberosum/genetics , Tylenchoidea/genetics
11.
Virol J ; 18(1): 119, 2021 06 06.
Article in English | MEDLINE | ID: mdl-34092256

ABSTRACT

BACKGROUND: Bovine viral diarrhea (BVD) which is caused by Bovine viral diarrhea virus (BVDV), is an acute, contagious disease. In spite of the use of vaccines and elimination projects, BVDV still causes severe economic losses to the cattle industry for the past few years. The current study presents a preliminary analysis of the pathogenic mechanisms from the perspective of protein expression levels in infected host cells at different points in time to elucidate the infection process associated with BVDV. METHODS: We used the isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach for a quantitative proteomics comparison of BVDV NADL-infected MDBK cells and non-infected cells. The functions of the proteins were deduced by functional annotation and their involvement in metabolic processes explored by KEGG pathway analysis to identify their interactions. RESULTS: There were 357 (47.6% downregulated, 52.4% upregulated infected vs. control), 101 (52.5% downregulated, 47.5% upregulated infected vs. control), and 66 (21.2% downregulated, 78.8% upregulated infected vs. control) proteins were differentially expressed (fold change > 1.5 or < 0.67) in the BVDV NADL-infected MDBK cells at 12, 24, and 48 h after infection. GO analysis showed that the differentially expressed proteins (DEPs) are mainly involved in metabolic processes, biological regulation and localization. KEGG enrichment analysis showed that some signaling pathways that involved in the regulation of BVDV NADL-infection and host resistance are significantly (P < 0.05) enriched at different stages of the BVDV NADL-infection, such as Endocytosis signaling pathway, FoxO signaling pathway, Homologous recombination signaling pathway and Lysosome pathway. CONCLUSIONS: These results revealed that the DEPs in BVDV NADL-infected MDBK cells have a wide range of regulatory effects; in addition, they provide a lot of resources for the study of host cell proteomics after BVDV infection.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Proteome , Animals , Cattle , Cell Line , Chromatography, Liquid , Diarrhea , Proteomics , Tandem Mass Spectrometry
12.
Mol Cell Biochem ; 476(12): 4245-4263, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34351574

ABSTRACT

Kawasaki disease (KD) causes cardiovascular system injury in children. However, the pathogenic mechanisms of KD have not been well defined. Recently, strong correlation between aberrant microRNAs and KD nosogenesis has been revealed. A role of microRNA-197-3p (miR-197-3p) in the pathogenesis of KD is identified in the present study. Cell proliferation assay showed human coronary artery endothelial cells (HCAECs) were suppressed by serum from KD patients, which was correlated with high levels of miR-197-3p in both KD serum and HCAECs cultured with KD serum. The inhibition of HCAECs by miR-197-3p was confirmed by cells expressing miR-197-3p mimic and miR-197-3p inhibitor. Comparative proteomics analysis and Ingenuity Pathway Analysis (IPA) revealed TIMP3 as a potential target of miR-197-3p, which was demonstrated by western blot and dual-luciferase reporter assays. Subsequently, by detecting the endothelium damage markers THBS1, VWF, and HSPG2, the role of miR-197-3p/TIMP3 in KD-induced damage to HCAECs was confirmed, which was further validated by a KD mouse model in vivo. The expressions of miR-197-3p and its target, TIMP3, are dramatically variational in KD serum and HCAECs cultured with KD serum. Increased miR-197-3p induces HCAECs abnormal by restraining TIMP3 expression directly. Hence, dysregulation of miR-197-3p/TIMP3 expression in HCAECs may be an important mechanism in cardiovascular endothelium injury in KD patients, which offers a feasible therapeutic target for KD treatment.


Subject(s)
Coronary Artery Disease/pathology , Endothelial Cells/pathology , MicroRNAs/genetics , Mucocutaneous Lymph Node Syndrome/pathology , Proteome/metabolism , Tissue Inhibitor of Metalloproteinase-3/antagonists & inhibitors , Animals , Apoptosis/physiology , Cells, Cultured , Child, Preschool , Coronary Artery Disease/genetics , Coronary Artery Disease/immunology , Coronary Artery Disease/metabolism , Endothelial Cells/immunology , Endothelial Cells/metabolism , Female , Humans , Infant , Male , Mice , Mice, Inbred C57BL , MicroRNAs/blood , Mucocutaneous Lymph Node Syndrome/etiology , Mucocutaneous Lymph Node Syndrome/metabolism , Proteome/analysis , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism
13.
Genomics ; 112(1): 934-942, 2020 01.
Article in English | MEDLINE | ID: mdl-31200027

ABSTRACT

Long non-coding RNAs are transcribed into RNA molecules that are >200 nucleotides in length. However, the expression and function analysis of lncRNAs in the sheep pituitary gland are still lacking. In this study, we identified 1755 lncRNAs (545 annotated lncRNAs and 1210 novel lncRNAs) from RNA-seq data in the pituitary gland of embryonic and adult sheep. A total of 235 lncRNAs were differentially expressed between embryonic and adult group. We verified the presence of some lncRNAs using RT-PCR and DNA sequencing, and identified some differentially expressed lncRNAs using qPCR. We also investigated the role of cis-acting lncRNAs on target genes. GO and KEGG enrichment analysis revealed that the target genes of lncRNAs were involved in the regulation of hormones secretion and some signaling pathways in the sheep pituitary gland. Our study provides comprehensive expression profiles of lncRNAs and valuable resource for understanding their function in the pituitary gland.


Subject(s)
Pituitary Gland/metabolism , RNA, Long Noncoding/metabolism , Sheep/genetics , Animals , Female , Gene Expression Regulation , Gene Ontology , Pituitary Gland/embryology , RNA, Messenger/metabolism , Sheep/embryology , Sheep/metabolism
14.
Funct Integr Genomics ; 20(4): 563-573, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32114660

ABSTRACT

Seasonal estrus is a key factor limiting animal fertility, and understanding the molecular mechanisms that regulate animal estrus is important for improving animal fertility. The pituitary gland, which is the most important endocrine gland in mammals, plays an important role in regulating the physiological processes such as growth, development, and reproduction of animals. Here, we used RNA-seq technology to study the expression profile of lncRNAs in the anterior pituitary of sheep during estrus and anestrus. In this study, we identified a total of 995 lncRNAs, of which 335 lncRNAs were differentially expressed in two states (including 38 up-regulated and 297 down-regulated lncRNAs). RT-qPCR verified the expression levels of several lncRNAs. Target predictive analysis revealed that these lncRNAs can act in cis or trans and regulate the expression of genes involved in the regulation of sheep estrus. Target gene enrichment analysis of differentially expressed lncRNAs indicates that these lncRNAs can regulate sheep estrus by regulating hormone metabolism and energy metabolism. Through our research, we provide the expression profile of lncRNAs in the pituitary of sheep, which provides a valuable resource for further understanding of the genetic regulation of seasonal estrus in sheep from the perspective of lncRNAs.


Subject(s)
Estrus/genetics , Pituitary Gland/metabolism , RNA, Long Noncoding/genetics , Sheep/genetics , Transcriptome , Animals , Female , RNA, Long Noncoding/metabolism , Sheep/physiology
15.
Genomics ; 111(2): 133-141, 2019 03.
Article in English | MEDLINE | ID: mdl-29366530

ABSTRACT

lncRNAs are a class of transcriptional RNA molecules of >200 nucleotides in length. However, the overall expression pattern and function of lncRNAs in sheep muscle is not clear. Here, we identified 1566 lncRNAs and 404 differentially expressed lncRNAs in sheep muscle from prenatal (110 days of fetus) and postnatal (2 to 3 years old of adult sheep) developmental stages by using RNA-seq technology. Several lncRNAs were identified by using RT-PCR and DNA sequencing. The expression levels of several lncRNAs were confirmed by qRT-PCR. We analyzed the effect of lncRNAs that act cis to the target genes. lncRNA targeting genes were involved in signaling pathways associated with growth and development of muscle by GO and KEGG enrichment analysis. Through our study, we provide a comprehensive expression profile of muscle lncRNAs in sheep, which provides valuable resources for further understanding genetic regulation of muscle growth and development from the perspective of lncRNA.


Subject(s)
Muscle, Skeletal/metabolism , RNA, Long Noncoding/genetics , Sheep/genetics , Animals , Gene Expression Regulation, Developmental , Muscle, Skeletal/embryology , Sheep/growth & development
16.
Asian-Australas J Anim Sci ; 32(6): 757-766, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30477295

ABSTRACT

OBJECTIVE: MicroRNAs are a class of endogenous small regulatory RNAs that regulate cell proliferation, differentiation and apoptosis. Recent studies on miRNAs are mainly focused on mice, human and pig. However, the studies on miRNAs in skeletal muscle of sheep are not comprehensive. METHODS: RNA-seq technology was used to perform genomic analysis of miRNAs in prenatal and postnatal skeletal muscle of sheep. Targeted genes were predicted using miRanda software and miRNA-mRNA interactions were verified by quantitative real-time polymerase chain reaction. To further investigate the function of miRNAs, candidate targeted genes were enriched for analysis using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. RESULTS: The results showed total of 1,086 known miRNAs and 40 new candidate miRNAs were detected in prenatal and postnatal skeletal muscle of sheep. In addition, 345 miRNAs (151 up-regulated, 94 down-regulated) were differentially expressed. Moreover, miRanda software was performed to predict targeted genes of miRNAs, resulting in a total of 2,833 predicted targets, especially miR-381 which targeted multiple muscle-related mRNAs. Furthermore, GO and KEGG pathway analysis confirmed that targeted genes of miRNAs were involved in development of skeletal muscles. CONCLUSION: This study supplements the miRNA database of sheep, which provides valuable information for further study of the biological function of miRNAs in sheep skeletal muscle.

17.
Asian-Australas J Anim Sci ; 31(10): 1550-1557, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29642686

ABSTRACT

OBJECTIVE: Circular RNAs (circRNAs) are a newfound class of non-coding RNA in animals and plants. Recent studies have revealed that circRNAs play important roles in cell proliferation, differentiation, autophagy and apoptosis during development. However, there are few reports about muscle development-related circRNAs in livestock. METHODS: RNA sequencing analysis was employed to identify and annotate circRNAs from longissimus dorsi of sheep. Reverse transcription followed by real-time quantitative (q) polymerase chain reaction (PCR) analysis verified the presence of these circRNAs. Targetscan7.0 and miRanda were used to analyse the interaction of circRNA-microRNA (miRNA). To investigate the function of circRNAs, an experiment was conducted to perform enrichment analysis hosting genes of circRNAs using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. RESULTS: About 75.5 million sequences were obtained from RNA libraries of sheep skeletal muscle. These sequences were mapped to 729 genes in the sheep reference genome. We identified 886 circRNAs, including numerous circular intronic RNAs and exonic circRNAs. Reverse transcription PCR (RT-PCR) and DNA sequencing analysis confirmed the presence of several circRNAs. Real-Time RT-PCR analysis exhibited resistance of sheep circRNAs to RNase R digestion. We found that many circRNAs interacted with muscle-specific miRNAs involved in growth and development of muscle, especially circ776. The GO and KEGG enrichment analysis showed that hosting genes of circRNAs was involved in muscle cell development and signaling pathway. CONCLUSION: The study provides comprehensive expression profiles of circRNAs in sheep skeletal muscle. Our study offers a large number of circRNAs to facilitate a better understanding of their roles in muscle growth. Meanwhile, we suggested that circ776 could be analyzed in future study.

18.
Asian-Australas J Anim Sci ; 29(3): 413-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26950874

ABSTRACT

Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

19.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581090

ABSTRACT

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Subject(s)
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genetics , Cucumis melo/metabolism , Gene Expression Profiling , Cucurbita/genetics , Cucurbita/metabolism , Cucurbitaceae/genetics , Sucrose/metabolism
20.
Gene ; 927: 148758, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38977109

ABSTRACT

The gut microbiota is a treasure trove of carbohydrate-active enzymes (CAZymes). To explore novel and efficient CAZymes, we analyzed the 4,142 metagenome-assembled genomes (MAGs) of the horse gut microbiota and found the MAG117.bin13 genome (Bacteroides fragilis) contains the highest number of polysaccharide utilisation loci sites (PULs), indicating its high capability for carbohydrate degradation. Bioinformatics analysis indicate that the PULs region of the MAG117.bin13 genome encodes many hypothetical proteins, which are important sources for exploring novel CAZymes. Interestingly, we discovered a hypothetical protein (595 amino acids). This protein exhibits potential CAZymes activity and has a lower similarity to CAZymes, we named it BfLac2275. We purified the protein using prokaryotic expression technology and studied its enzymatic function. The hydrolysis experiment of the polysaccharide substrate showed that the BfLac2275 protein has the ability to degrade α-lactose (156.94 U/mg), maltose (92.59 U/mg), raffinose (86.81 U/mg), and hyaluronic acid (5.71 U/mg). The enzyme activity is optimal at pH 5.0 and 30 ℃, indicating that the hypothetical protein BfLac2275 is a novel and multifunctional CAZymes in the glycoside hydrolases (GHs). These properties indicate that BfLac2275 has broad application prospects in many fields such as plant polysaccharide decomposition, food industry, animal feed additives and enzyme preparations. This study not only serves as a reference for exploring novel CAZymes encoded by gut microbiota but also provides an example for further studying the functional annotation of hypothetical genes in metagenomic assembly genomes.


Subject(s)
Gastrointestinal Microbiome , Glycoside Hydrolases , Metagenome , Animals , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Gastrointestinal Microbiome/genetics , Horses , Genome, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Substrate Specificity , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL