Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Am Chem Soc ; 145(35): 19274-19282, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37585588

ABSTRACT

To promote the commercialization of direct formic acid fuel cell (DFAFC), it is vital to explore new types of direct formic acid oxidation (FAOR) catalysts with high activity and direct pathway. Here, we report the synthesis of intermetallic platinum-lead/platinum nanoplates inlaid with sub-monolayer antimony oxide surface (PtPb/Pt@sub-SbOx NPs) for efficient catalytic applications in FAOR. Impressively, they can achieve the remarkable FAOR specific and mass activities of 28.7 mA cm-2 and 7.2 A mgPt-1, which are 151 and 60 times higher than those of the state-of-the-art commercial Pt/C, respectively. Furthermore, the X-ray photoelectron spectroscopy and X-ray absorption spectroscopy results collectively reveal the optimization of the local coordination environment by the surface sub-monolayer SbOx, along with the electron transfer from Pb and Sb to Pt, driving the predominant dehydrogenation process. The sub-monolayer SbOx on the surface can effectively attenuate the CO generation, largely improving the FAOR performance of PtPb/Pt@sub-SbOx NPs. This work develops a class of high-performance Pt-based anodic catalyst for DFAFC via constructing the unique intermetallic core/sub-monolayer shell structure.

2.
J Am Chem Soc ; 145(28): 15109-15117, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37289521

ABSTRACT

Designing platinum (Pt)-based formic acid oxidation reaction (FAOR) catalysts with high performance and high selectivity of direct dehydrogenation pathway for direct formic acid fuel cell (DFAFC) is desirable yet challenging. Herein, we report a new class of surface-uneven PtPbBi/PtBi core/shell nanoplates (PtPbBi/PtBi NPs) as the highly active and selective FAOR catalysts, even in the complicated membrane electrode assembly (MEA) medium. They can achieve unprecedented specific and mass activities of 25.1 mA cm-2 and 7.4 A mgPt-1 for FAOR, 156 and 62 times higher than those of commercial Pt/C, respectively, which is the highest for a FAOR catalyst by far. Simultaneously, they show highly weak adsorption of CO and high dehydrogenation pathway selectivity in the FAOR test. More importantly, the PtPbBi/PtBi NPs can reach the power density of 161.5 mW cm-2, along with a stable discharge performance (45.8% decay of power density at 0.4 V for 10 h), demonstrating great potential in a single DFAFC device. The in situ Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) results collectively reveal a local electron interaction between PtPbBi and PtBi. In addition, the high-tolerance PtBi shell can effectively inhibit the production/adsorption of CO, resulting in the complete presence of the dehydrogenation pathway for FAOR. This work demonstrates an efficient Pt-based FAOR catalyst with 100% direct reaction selectivity, which is of great significance for driving the commercialization of DFAFC.

3.
Angew Chem Int Ed Engl ; 62(44): e202311722, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37702370

ABSTRACT

CO poisoning of Pt group metal (PGM) catalysts is a chronic problem for hydrogen oxidation reaction (HOR), the anodic reaction of hydroxide exchange membrane fuel cell (HEMFC) for converting H2 to electric energy in sustainable manner. We demonstrate here an ultrathin Ru-based nanoflower modified with Pb (PbRuCu NF) as an active, stable, and CO-resistant catalyst for alkaline HOR. Mechanism studies show that the presence of Pb can weaken the adsorption of *H, strengthen *OH adsorption to facilitate CO oxidation, as a result of significantly enhanced HOR activity and improved CO tolerance. Furthermore, in situ electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) suggests that Pb acts as oxygen-rich site to regulate the behavior of the linear CO adsorption. The optimized Pb1.04 -Ru92 Cu8 /C displays a mass activity and specific activity of 1.10 A mgRu -1 and 5.55 mA cm-2 , which are ≈10 and ≈31 times higher than those of commercial Pt/C. This work provides a facile strategy for the design of Ru-based catalyst with high activity and strong CO-resistance for alkaline HOR, which may promote the fundamental researches on the rational design of functional catalysts.

4.
Appl Environ Microbiol ; 87(19): e0106621, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34505824

ABSTRACT

Amycolatopsis sp. strain TNS106 harbors a ristomycin-biosynthetic gene cluster (asr) in its genome and produces ristomycin A. Deletion of the sole cluster-situated StrR family regulatory gene, asrR, abolished ristomycin A production and the transcription of the asr genes orf5 to orf39. The ristomycin A fermentation titer in Amycolatopsis sp. strain TNS106 was dramatically improved by overexpression of asrR and a heterologous StrR family regulatory gene, bbr, from the balhimycin-biosynthetic gene cluster (BGC) utilizing strong promoters and multiple gene copies. Ristomycin A production was improved by approximately 60-fold, resulting in a fermentation titer of 4.01 g/liter in flask culture, in one of the engineered strains. Overexpression of AsrR and Bbr upregulated transcription of tested asr biosynthetic genes, indicating that these asr genes were positively regulated by AsrR and Bbr. However, only the promoter region of the asrR operon and the intergenic region upstream of orf12 were bound by AsrR and Bbr in gel retardation assays, suggesting that AsrR and Bbr directly regulated the asrR operon and probably orf12 to orf14 but no other asr biosynthetic genes. Further assays with synthetic short probes showed that AsrR and Bbr specifically bound not only probes containing the canonical inverted repeats but also a probe with only one 7-bp element of the inverted repeats in its native context. AsrR and Bbr have an N-terminal ParB-like domain and a central winged helix-turn-helix DNA-binding domain. Site-directed mutations indicated that the N-terminal ParB-like domain was involved in activation of ristomycin A biosynthesis and did not affect the DNA-binding activity of AsrR and Bbr. IMPORTANCE This study showed that overexpression of either a native StrR family regulator (AsrR) or a heterologous StrR family regulator (Bbr) dramatically improved ristomycin A production by increasing the transcription of biosynthetic genes directly or indirectly. The conserved ParB-like domain of AsrR and Bbr was demonstrated to be involved in the regulation of asr BGC expression. These findings provide new insights into the mechanism of StrR family regulators in the regulation of glycopeptide antibiotic biosynthesis. Furthermore, the regulator overexpression plasmids constructed in this study could serve as valuable tools for strain improvement and genome mining for new glycopeptide antibiotics. In addition, ristomycin A is a type III glycopeptide antibiotic clinically used as a diagnostic reagent due to its side effects. The overproduction strains engineered in this study are ideal materials for industrial production of ristomycin A.


Subject(s)
Amycolatopsis/genetics , Amycolatopsis/metabolism , Hemagglutinins/biosynthesis , Ristocetin/biosynthesis , Fermentation , Genes, Bacterial , Genes, Regulator , Metabolic Engineering , Multigene Family
5.
Food Chem ; 439: 138134, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38064837

ABSTRACT

Ethanol-acid penetration and drying-heating treatment was developed to shorten the preparation time and improve the quality of starch nanocrystals (SNCs). After treatment by optimized parameters, including 40 % ethanol solution, 10.6 mM chloric acid, and heating time of 1.5 h or 2.0 h, the starches exhibited weakened internal structure and relatively complete crystalline structure. Compared with the regular preparation of only acid hydrolysis, the regular final yield (8.5 % after 5 days) was reached in 48 h and 12 h of the starch heated at 1.5 h and 2.0 h, respectively. The micromorphology, molecular weight, and crystalline structure evaluation demonstrated that the collected nanoparticles were indeed SNCs with smaller size and higher relative crystallinity than regular SNCs. Further analysis found that the SNCs had better crystalline lamellae, higher thermal stability, and lower proportion of phosphorus and sulfur atoms than regular SNCs. This provided a potential method for the high-efficiency preparation of SNCs.


Subject(s)
Nanoparticles , Starch , Starch/chemistry , Ethanol , Heating , Particle Size , Acids , Nanoparticles/chemistry
6.
J Mol Med (Berl) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953935

ABSTRACT

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1ß, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.

7.
Article in English | MEDLINE | ID: mdl-36674174

ABSTRACT

Through the Tapio model, this paper measures the "decoupling and coupling" relationship between carbon emissions, carbon sinks, and economic growth of marine fisheries in nine coastal provinces of China in 2009-2019, objectively evaluates the economic benefits of carbon emissions and low-carbon development potential, and then discusses the economic development models of marine fisheries in detail. The results showed that the total carbon sink and carbon emission of China's marine fisheries are increasing. Guangdong is dominated by "double low" economic benefits and low-carbon potential, and "double high" provinces have better resource endowment conditions; China's marine fishery economic development is still dominated by conventional types. To further promote the sustainable development of China's marine fisheries, all provinces should define the development orientation of marine fisheries, improve the production methods of marine fisheries according to local conditions, and adjust the industrial structure of marine fisheries in a timely manner, to achieve the low-carbon fishery goal of reducing carbon emissions and growing the economy.


Subject(s)
Economic Development , Fisheries , Carbon/analysis , Carbon Dioxide/analysis , China
8.
Math Biosci Eng ; 20(8): 13864-13880, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37679114

ABSTRACT

In 3D reconstruction tasks, camera parameter matrix estimation is usually used to present the single view of an object, which is not necessary when mapping the 3D point to 2D image. The single view reconstruction task should care more about the quality of reconstruction instead of the alignment. So in this paper, we propose an implicit field knowledge distillation model (IFKD) to reconstruct 3D objects from the single view. Transformations are performed on 3D points instead of the camera and keep the camera coordinate identified with the world coordinate, so that the extrinsic matrix can be omitted. Besides, a knowledge distillation structure from 3D voxel to the feature vector is established to further refine the feature description of 3D objects. Thus, the details of a 3D model can be better captured by the proposed model. This paper adopts ShapeNet Core dataset to verify the effectiveness of the IFKD model. Experiments show that IFKD has strong advantages in IOU and other core indicators compared with the camera matrix estimation methods, which verifies the feasibility of the new proposed mapping method.

9.
J Integr Med ; 13(5): 341-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26343106

ABSTRACT

Recombinant adeno-associated virus (rAAV) serotype 2, 3 and 8 vectors are the most promising liver-tropic AAV serotype vectors. Liver diseases are significant problems in China. However, to date, few studies on AAV neutralizing antibodies (Nabs) were working with the Chinese population or with the rAAV3 vectors. The present study aimed to determine the prevalence of Nabs in Chinese population against wild-type AAV2, AAV3 and AAV8 capsids as well as additional two AAV3 variants. In addition, we performed a preliminary analysis to investigate the potential influence of traditional Chinese medicine body constitutions on AAV Nabs. Our work demonstrated that the majority of healthy Chinese subjects were positive for AAV Nabs, with the order of AAV2>AAV3=AAVLK03>AAV8. There was no difference between: 1) AAV3 and its variants; 2) male and female subjects; and 3) different age cohorts (≤35, 36-50, and ≥51 years old). People in the Qi-deficiency constitution had significantly increased AAV8 Nabs than people in the Gentleness constitution. Our studies may have impact on the future clinical design of AAV-based gene therapy in the Chinese population.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Body Constitution , Dependovirus/immunology , Genetic Vectors , Liver/virology , Adult , Aged , Dependovirus/classification , Female , Humans , Male , Middle Aged , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL