Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 379-388, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38403314

ABSTRACT

Andrographis paniculata is an important medicinal plant in the Lingnan region of China, which has the functions of clearing heat, removing toxins, and resisting bacteria and inflammation. The TCP gene family is a class of transcription factors that regulate plant growth, development, and stress response. In order to analysis the role of the TCP gene family under abiotic stress in A. paniculata, this study identified the TCP gene family of A. paniculata at the genome-wide level and analyzed its expression pattern in response to abiotic stress. The results showed that the A. paniculata TCP gene family had 23 members, with length of amino acid ranging from 136 to 508, the relative molecular mass between 14 854.71 and 55 944.90 kDa, and the isoelectric point between 5.67 and 10.39. All members were located in the nucleus and unevenly distributed on 13 chromosomes. Phylogenetic analysis classified them into three subfamilies: PCF, CIN and CYC/TB1. Gene structure and conserved motif analysis showed that most members of the TCP gene family contained motif 1, motif 2, motif 3 in the same order and 1-3 CDS. The analysis of promoter cis-acting elements showed that the transcriptional expression of the TCP gene family in A. paniculata might be induced by light, hormones, and adversity stress. In light of the expression pattern analysis and qRT-PCR verification, the expression of ApTCP4, ApTCP5, ApTCP6, and ApTCP11 involved in response by various abiotic stresses such as drought, high temperature, and MeJA. This study lays the foundation for in-depth exploration of the functions of A. paniculata TCP genes in response to abiotic stress.


Subject(s)
Amino Acids , Andrographis paniculata , Phylogeny , China , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics
2.
Semin Cancer Biol ; 69: 140-149, 2021 02.
Article in English | MEDLINE | ID: mdl-31412298

ABSTRACT

Ginger is a spice that is renowned for its characteristic aromatic fragrance and pungent taste, with documented healing properties. Field studies conducted in several Asian and African countries revealed that ginger is used traditionally in the management of cancer. The scientific community has probed into the biological validation of its extracts and isolated compounds including the gingerols, shogaols, zingiberene, and zingerone, through in-vitro and in-vivo studies. Nonetheless, an updated compilation of these data together with a deep mechanistic approach is yet to be provided. Accordingly, this review highlights the mechanisms and therapeutics of ginger and its bioactive compounds focused on a cancer context and these evidence are based on the (i) cytotoxic effect against cancer cell lines, (ii) enzyme inhibitory action, (iii) combination therapy with chemotherapeutic and phenolic compounds, (iv) possible links to the microbiome and (v) the use of nano-formulations of ginger bioactive compounds as a more effective drug delivery strategy in cancer therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Drug Delivery Systems , Nanoparticles/administration & dosage , Neoplasms/drug therapy , Phytochemicals/administration & dosage , Plant Extracts/administration & dosage , Zingiber officinale/chemistry , Animals , Humans , Nanoparticles/chemistry , Neoplasms/pathology
3.
Mikrochim Acta ; 189(6): 217, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538261

ABSTRACT

An ultrasensitive fluorescence assay strategy on the basis of carbon dots (CDs) and cDNA-modified gold nanoparticles (AuNP-cDNA) was developed for the determination of microRNA-21 (miRNA-21) via internal filtering effect (IFE). Positively charged CDs (PEI-CDs), the fluorophores in IFE, were synthesized via a hydrothermal method using polyethyleneimine (PEI) as surface ligand. The maximum emission wavelength is located at 500 nm under the excitation of 410 nm. AuNPs, the absorbers, were modified with single-stranded DNA (cDNA), which is completely complementary to miRNA-21. The fluorescence of PEI-CDs is quenched due to the assembly of PEI-CDs and AuNPs-cDNA. In the presence of miRNA-21, the hybridization between miRNA-21 and cDNA causes the release of PEI-CDs and the recovery of fluorescence intensity.The fluorescence recovery degree is linearly correlated with the logarithm of miRNA-21 concentration in the range of 1-1000 fM. This method can be applied to determine miRNA-21 in real serum samples, and the detection results are in well agreement with those of qRT-PCR. The determination of miRNA-21 spiked into diluted human serum samples displays satisfactory recovery within the range 88.44-112.7%, which confirmed the reliability for miRNAs detection in real samples.


Subject(s)
Metal Nanoparticles , MicroRNAs , Quantum Dots , Carbon , DNA/analysis , DNA/genetics , DNA, Complementary , Gold , Humans , Limit of Detection , MicroRNAs/analysis , Polyethyleneimine , Reproducibility of Results
4.
Mikrochim Acta ; 189(3): 89, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35129701

ABSTRACT

For real-time evaluation of the cell behavior and function under in vivo-like 3D environment, the 3D functionalized scaffolds simultaneously integrate the function of 3D cell culture, and electrochemical sensing is a convincing candidate. Herein, Fe3O4 nanoparticles as the nanozyme (peroxide oxidase mimics) were modified on graphene foam scaffold to construct a 3D integrated platform. The platform displayed a wide linear range of 100 nM to 20 µM and a high sensitivity of 53.2 nA µM-1 toward detection of hydrogen peroxide (H2O2) under the working potential of + 0.6 V (vs. Ag/AgCl). The obtained 3D scaffold also displayed satisfactory selectivity toward the possible interferents that appeared in the cell culture environment. Furthermore, the cells still maintained high cell viability (almost 100%) after their growth and proliferation on the scaffold for 7 days. With the superior performance on cell culture and electrochemical monitoring, the functions on the 3D culture of MCF-7 or HeLa cells and in situ monitoring of cell-released H2O2 was easily achieved on this 3D platform, which show its great application prospects on further cancer-related disease diagnosis or drug screening. A nanozyme-based three-dimensional graphene scaffold was successfully constructed for cell culture and identification of cancer cells through in situ electrochemical monitoring of the cell-released H2O2.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Graphite/chemistry , Hydrogen Peroxide/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Cells, Cultured , Electrodes , HeLa Cells , Humans , Hydrogen Peroxide/chemistry , MCF-7 Cells , Particle Size , Surface Properties
5.
Anal Chem ; 93(22): 7917-7924, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34019392

ABSTRACT

Three-dimensional (3D) cell culture can better reproduce the in vivo cell environment and has been extensively used in fields such as tissue engineering, drug screening, and pathological research. Despite the tremendous advancement of 3D cultures, an analysis technique that could collect real-time information of the biological processes therein is sorely lacking. Electrochemical sensing with fast response and high sensitivity has played a vital role in real-time monitoring of living cells, but most current sensors are based on planar electrodes and fail to perfectly match the 3D cell culture matrix. Herein, we developed a robust 3D electrochemical sensor based on functionalized graphene foam (GF), which could be integrated with hydrogels for the 3D culture and in situ monitoring of cells for the first time. Specifically, platinum nanoparticles (Pt NPs) electrodeposited on GF (GF/Pt NPs) conferred the prominent electrochemical sensing performance, and the anti-fouling coating of poly(3,4-ethylenedioxythiophene) (PEDOT) endowed the GF/Pt NPs electrode with greatly improved stability. As a proof of concept, collagen hydrogel with microglia seeded in was filled into the interspace of the 3D GF/Pt NPs/PEDOT sensor to establish an integrated platform, which allowed the successful real-time monitoring of reactive oxygen species released from microglia in the collagen matrix. Given the versatility, our proposed biosensor in conjunction with various 3D culture models will serve as an excellent tool to provide biochemical information of cells under their in vivo-like microenvironment.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Electrochemical Techniques , Electrodes , Hydrogels , Platinum
6.
Inflammopharmacology ; 29(1): 123-135, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32924074

ABSTRACT

BACKGROUND: Bothrops moojeni snake venom (VBm) has toxins that cause pronounced tissue damage and exacerbated inflammatory reaction. Cannabis sativa L. is a plant species that produces an oil (CSO) rich in unsaturated fatty acids. Nano-emulsions have several advantages, such as better stability and higher penetrating power in membranes. Therefore, this study evaluated the effect of a nano-emulsion based on this herbal derivative (NCS) against VBm-induced inflammation in Wistar rats. METHODS: The CSO and NCS were submitted to physicochemical characterization. The inflammatory process was induced by the VBm (0.10 mg/kg) as follows: rat paw edema, peritonitis, analysis of leukocyte infiltrate in gastrocnemius muscle of rats and formation of granulomatous tissue. RESULTS: No significant changes were observed when the NCS was submitted to the centrifugation and thermal stress tests. There was no phase separation, changes in density (0.978 ± 0.01 g/cm3) and viscosity (0.889 ± 0.15). The droplet diameter ranged from 119.7 ± 065 to 129.3 ± 0.15 nm and the polydispersity index ranged from 0.22 ± 0.008 to 0.23 ± 0.011. The results showed that treatments with CSO (200 and 400 mg/kg) and NCS (100 mg/kg) were able to decrease significantly (p < 0.001) the formation of edema and granulomatous tissue. The CSO and NCS groups significantly attenuated (p < 0.001) the recruitment of inflammatory cells in the tests for peritonitis and leukocyte infiltrate. The histopathological analysis of the gastrocnemius muscle showed a reduction in tissue damage caused by VBm. CONCLUSION: The results obtained in this study showed anti-inflammatory activity of the CSO which may be due to a high UFA content. The nanosizing, as evidenced by the incorporation of the CSO in the NCS improved the effect and opens the perspective for the obtainment of a nanomedicine in which a kinetic stable phytotherapic can be used at low doses.


Subject(s)
Cannabis/chemistry , Crotalid Venoms/toxicity , Inflammation/drug therapy , Plant Oils/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Bothrops , Edema/drug therapy , Edema/pathology , Emulsions , Inflammation/pathology , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Nanostructures , Particle Size , Plant Oils/administration & dosage , Rats , Rats, Wistar
7.
Anal Chem ; 92(23): 15639-15646, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33179904

ABSTRACT

Vascular endothelial cells (ECs) are natively exposed to dynamic cyclic stretch and respond to it by the production of vasoactive molecules. Among them, reactive oxygen species (ROS) are closely implicated to the endothelial function and vascular homeostasis. However, the dynamic monitoring of ROS release during endothelial mechanotransduction remains a steep challenge. Herein, we developed a stretchable electrochemical sensor by decoration of uniform and ultrasmall platinum nanoparticles (Pt NPs) on gold nanotube (Au NT) networks (denoted as Au@Pt NTs). The orchestrated structure exhibited prominent electrocatalytic property toward the oxidation of hydrogen peroxide (H2O2) (as the most stable ROS) while maintaining excellent mechanical compliance of Au NT networks. Moreover, the favorable biocompatibility of Au NTs and Pt NPs promoted the adhesion and proliferation of ECs cultured thereon. These allowed in situ inducing ECs mechanotransduction and synchronously real-time monitoring of H2O2 release. Further investigation revealed that the production of H2O2 was positively correlated with the applied mechanical strains and could be boosted by other coexisting pathogenic factors. This indicates the great prospect of our proposed sensor in exploring ROS-related signaling for the deep understanding of cell mechanotransduction and vascular disorder.


Subject(s)
Endothelial Cells/cytology , Gold/chemistry , Mechanotransduction, Cellular , Nanotubes/chemistry , Platinum/chemistry , Reactive Oxygen Species/metabolism , Signal Transduction , Cell Line , Electrodes , Hydrogen Peroxide/metabolism
8.
BMC Plant Biol ; 20(1): 131, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228461

ABSTRACT

BACKGROUND: Leaves of the medicinal plant Ampelopsis grossedentata, which is commonly known as vine tea, are used widely in the traditional Chinese beverage in southwest China. The leaves contain a large amount of dihydromyricetin, a compound with various biological activities. However, the transcript profiles involved in its biosynthetic pathway in this plant are unknown. RESULTS: We conducted a transcriptome analysis of both young and old leaves of the vine tea plant using Illumina sequencing. Of the transcriptome datasets, a total of 52.47 million and 47.25 million clean reads were obtained from young and old leaves, respectively. Among 471,658 transcripts and 177,422 genes generated, 7768 differentially expressed genes were identified in leaves at these two stages of development. The phenylpropanoid biosynthetic pathway of vine tea was investigated according to the transcriptome profiling analysis. Most of the genes encoding phenylpropanoid biosynthesis enzymes were identified and found to be differentially expressed in different tissues and leaf stages of vine tea and also greatly contributed to the biosynthesis of dihydromyricetin in vine tea. CONCLUSIONS: To the best of our knowledge, this is the first formal study to explore the transcriptome of A. grossedentata. The study provides an insight into the expression patterns and differential distribution of genes related to dihydromyricetin biosynthesis in vine tea. The information may pave the way to metabolically engineering plants with higher flavonoid content.


Subject(s)
Ampelopsis/genetics , Flavonols/biosynthesis , Ampelopsis/metabolism , China , Flavonoids/biosynthesis , Flavonoids/genetics , Flavonols/genetics , Gene Expression , Gene Expression Profiling
9.
Anal Chem ; 91(7): 4838-4844, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30864440

ABSTRACT

Remarkable progresses have been made in electrochemical monitoring of living cells based on one-dimensional (1D) or two-dimensional (2D) sensors, but the cells cultured on 2D substrate under these circumstances are departed from their three-dimensional (3D) microenvironments in vivo. Significant advances have been made in developing 3D culture scaffolds to simulate the 3D microenvironment yet most of them are insulated, which greatly restricts their application in electrochemical sensing. Herein, we propose a versatile strategy to endow 3D insulated culture scaffolds with electrochemical performance while granting their biocompatibility through conductive polymer coating. More specifically, 3D polydimethylsiloxane scaffold is uniformly coated by poly(3,4-ethylenedioxythiophene) and further modified by platinum nanoparticles. The integrated 3D device demonstrates desirable biocompatibility for long-term 3D cell culture and excellent electrocatalytic ability for electrochemical sensing. This allows real-time monitoring of reactive oxygen species release from cancer cells induced by a novel potential anticancer drug and reveals its promising application in cancer treatment. This work provides a new idea to construct 3D multifunctional electrochemical sensors, which will be of great significance for physiological and pathological research.


Subject(s)
Cell Culture Techniques , Electrochemical Techniques , Polymers/chemistry , Electric Conductivity , Electrodes , HeLa Cells , Human Umbilical Vein Endothelial Cells/cytology , Humans , MCF-7 Cells
10.
Anal Chem ; 90(2): 1136-1141, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29251916

ABSTRACT

Current achievements on electrochemical monitoring of cells are often gained on two-dimensional (2D) substrates, which fail in mimicking the cellular environments and accurately reproducing the cellular functions within a three-dimensional (3D) tissue. In this regard, 3D scaffold concurrently integrated with the function of cell culture and electrochemical sensing is conceivably a promising platform to monitor cells in real time under their in vivo-like 3D microenvironments. However, it is particularly challenging to construct such a multifunctional scaffold platform. Herein, we developed a 3-aminophenylboronic acid (APBA) functionalized graphene foam (GF) network, which combines the biomimetic property of APBA with the mechanical and electrochemical properties of GF. Hence, the GF network can serve as a 3D scaffold to culture cells for a long period with high viability and simultaneously as an electrode for highly sensitive electrochemical sensing. This allows monitoring of gaseous messengers H2S released from the cells cultured on the 3D scaffold in real time. This work represents considerable progress in fabricating 3D cell culture scaffold with electrochemical properties, thereby facilitating future studies of physiologically relevant processes.


Subject(s)
Aniline Compounds/chemistry , Biomimetic Materials/chemistry , Boronic Acids/chemistry , Cell Culture Techniques/methods , Graphite/chemistry , Tissue Scaffolds/chemistry , Biomimetics , Biosensing Techniques/methods , Cell Adhesion , Cell Proliferation , Electrochemical Techniques/methods , HeLa Cells , Humans , Hydrogen Sulfide/analysis
11.
Biochem Biophys Res Commun ; 495(1): 1271-1277, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29180016

ABSTRACT

Anemone flaccida Fr. Shmidt (Ranunculaceae), known as 'Di Wu' in China, is a perennial herb which has long been used to treat arthritis. The rhizome of A. flaccida contains pharmacologically active components i.e. oleanane-type triterpenoid saponins. Oleanolic acid is natural triterpenoid in plants with diverse biological activities. The biosynthesis of oleanolic acid involves cyclization of 2,3-oxidosqualene to the oleanane-type triterpenoid skeleton, followed by a series of oxidation reactions catalyzed by cytochrome P450 monooxygenase (CYP450). Previously, we identified four possible cytochrome P450 genes belonging to CYP716A subfamily from the transcriptome of A. flaccida. In this study, we identified one of those genes "CYP716A254" encoding a cytochrome P450 monooxygenase from A. flaccida that catalyzes the conversion of the ß-amyrin into oleanolic acid. The heterologous expression of CYP716A254 in yeast resulted in oxidation of ß-amyrin at the C-18 position to oleanolic acid production. These results provide an important basis for further studies of oleanane-type triterpenoid saponins synthesis in A. flaccida.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/biosynthesis , Ranunculaceae/enzymology , Saponins/biosynthesis , Catalysis , Oleanolic Acid/metabolism
12.
Angew Chem Int Ed Engl ; 56(32): 9454-9458, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28636246

ABSTRACT

Existing methods offer little direct and real-time information about stretch-triggered biochemical responses during cell mechanotransduction. A novel stretchable electrochemical sensor is reported that takes advantage of a hierarchical percolation network of carbon nanotubes and gold nanotubes (CNT-AuNT). This hybrid nanostructure provides the sensor with excellent time-reproducible mechanical and electrochemical performances while granting very good cellular compatibility, making it perfectly apt to induce and monitor simultaneously transient biochemical signals. This is validated by monitoring stretch-induced transient release of small signaling molecules by both endothelial and epithelial cells cultured on this sensor and submitted to stretching strains of different intensities. This work demonstrates that the hybrid CNT-AuNT platform offers a versatile and highly sensitive way to characterize and quantify short-time mechanotransduction responses.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold/chemistry , Human Umbilical Vein Endothelial Cells/chemistry , Mechanotransduction, Cellular , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Nitric Oxide/biosynthesis , Nitric Oxide/chemistry , Nitric Oxide Synthase Type III/metabolism , Particle Size , Time Factors
13.
Angew Chem Int Ed Engl ; 55(14): 4537-41, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26929123

ABSTRACT

Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real-time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching-free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.


Subject(s)
Biosensing Techniques , Electrochemical Techniques/instrumentation , Dimethylpolysiloxanes/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Microscopy, Electron, Scanning
14.
Nat Prod Res ; : 1-5, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303502

ABSTRACT

Glycyrrhetinic acid may undergo biotransformation to obtain derivatives with stronger pharmacological activity and fewer side effects. This study used 19 fungi to biotransform glycyrrhetinic acid and yielded two compounds namely bicyclo(14.15.27)glycyrrhetinic acid (1) and 2-ene-glycyrrhetinic acid (2) from the glycyrrhetinic acid metabolites of two fungi, Botrytis cinerea B05.10 ATCC 11542 and Aspergillus ochraceopetaliformis ATCC 12066. Compound 1 inhibited HMEC-1 cell proliferation in a concentration-dependent manner (IC50=239.1 µ M), but showed no significant cytotoxicity to A549 cells.

15.
ACS Appl Mater Interfaces ; 16(12): 14626-14632, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38477624

ABSTRACT

As one of the interesting signaling mechanisms, the in situ growth reaction on a photoelectrode has proven its powerful potential in photoelectrochemical (PEC) bioanalysis. However, the specific interaction between the signaling species with the photoactive materials limits the general application of the signal mechanism. Herein, on the basis of an in situ growth reaction on a photoelectrode of single-atom-based photoactive material, a general PEC immunoassay was developed in a split-type mode consisting of the immunoreaction and PEC detection procedure. Specifically, a single-atom photoactive material that incorporates Fe atoms into layered Bi4O5I2 (Bi4O5I2-Fe SAs) was used as a photoelectrode for PEC detection. The sandwich immunoreaction was performed in a well of a 96-well plate using Ag nanoparticles (Ag NPs) as signal tracers. In the PEC detection procedure, the Ag+ converted from Ag NPs were transferred onto the surface of the Bi4O5I2-Fe SAs photoelectrode and thereafter AgI was generated on the Bi4O5I2-Fe SAs in situ to form a heterojunction through the reaction of Ag+ with Bi4O5I2-Fe SAs. The formation of heterojunction greatly promoted the electro-hole separation, boosting the photocurrent response. Exemplified by myoglobin (Myo) as the analyte, the immunosensor achieved a wide linear range from 1.0 × 10-11 to 5.0 × 10-8 g mL-1 with a detection limit of 3.5 × 10-12 g mL-1. This strategy provides a general PEC immunoassay for disease-related proteins, as well as extends the application scope of in situ growth reaction in PEC analysis.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Biosensing Techniques/methods , Immunoassay/methods , Silver , Myoglobin , Electrochemical Techniques/methods , Limit of Detection
16.
Toxicon ; 244: 107773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795848

ABSTRACT

Sophora flavescens Aiton, a traditional Chinese medicine that was supposed to predominantly play an anti-inflammatory role, has been used to treat multiple diseases, including cancer, for over two thousand years. Recently, it has attracted increasing attention due to the anti-tumor properties of Oxymatrine, one of the most active alkaloids extracted from S. flavescens. This study aims to explore it's anti-tumor effects in non-small cell lung cancer (NSCLC) and the underlying mechanisms. We first investigated the effects of oxymatrine on cell apoptosis in lung cancer cell lines A549 and PC9 as well as explored related genes in regulating the apoptosis by transcriptome analysis. Subsequently, to further study the role of TRIM46, we constructed two types of TRIM46 over-expression cells (A549TRIM46+ and PC9TRIM46+ cells) and then investigated the effect of TRIM46 on oxymatrine-induced apoptosis. Moreover, we explored the effect of TRIM46 on downstream signaling pathways. Transcriptome analysis suggested that shared differentially expressed genes (DEGs) in A549 and PC9 cells treated with oxymatrine were CACNA1I, PADI2, and TRIM46. According to TCGA database analysis, the abundance of TRIM46 expression was higher than CACNA1I, and PADI2 in lung cancer tissues, then was selected as the final DEG for subsequent studies. We observed that oxymatrine resulted in down-expression of TRIM46 as well as induced the apoptosis of the cancer cells in a dose- and time-dependent manner. Meanwhile, we found that apoptosis induced by oxymatrine was inhibited by over-expressing TRIM46. Furthermore, our study indicated that the NF-κB signaling pathway was involved in apoptosis suppressed by TRIM46. We conclude that TRIM46 is the direct target of oxymatrine to induce anti-tumor apoptosis and may activate the downstream NF-κB signaling pathway.


Subject(s)
Alkaloids , Apoptosis , Carcinoma, Non-Small-Cell Lung , Down-Regulation , Lung Neoplasms , Quinolizines , Quinolizines/pharmacology , Humans , Alkaloids/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Cell Line, Tumor , A549 Cells , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Signal Transduction/drug effects , Matrines
17.
Database (Oxford) ; 20242024 May 22.
Article in English | MEDLINE | ID: mdl-38776380

ABSTRACT

Natural products play a pivotal role in drug discovery, and the richness of natural products, albeit significantly influenced by various environmental factors, is predominantly determined by intrinsic genetics of a series of enzymatic reactions and produced as secondary metabolites of organisms. Heretofore, few natural product-related databases take the chemical content into consideration as a prominent property. To gain unique insights into the quantitative diversity of natural products, we have developed the first TerPenoids database embedded with Content information (TPCN) with features such as compound browsing, structural search, scaffold analysis, similarity analysis and data download. This database can be accessed through a web-based computational toolkit available at http://www.tpcn.pro/. By conducting meticulous manual searches and analyzing over 10 000 reference papers, the TPCN database has successfully integrated 6383 terpenoids obtained from 1254 distinct plant species. The database encompasses exhaustive details including isolation parts, comprehensive molecule structures, chemical abstracts service registry number (CAS number) and 7508 content descriptions. The TPCN database accentuates both the qualitative and quantitative dimensions as invaluable phenotypic characteristics of natural products that have undergone genetic evolution. By acting as an indispensable criterion, the TPCN database facilitates the discovery of drug alternatives with high content and the selection of high-yield medicinal plant species or phylogenetic alternatives, thereby fostering sustainable, cost-effective and environmentally friendly drug discovery in pharmaceutical farming. Database URL: http://www.tpcn.pro/.


Subject(s)
Terpenes , Terpenes/metabolism , Terpenes/chemistry , Databases, Chemical , Databases, Factual
18.
Proc Natl Acad Sci U S A ; 107(14): 6252-7, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20308586

ABSTRACT

A systematic approach to the discovery of conformation-specific antibodies or those that recognize activation-induced neoepitopes in signaling molecules and enzymes will be a powerful tool in developing antibodies for basic science and therapy. Here, we report the isolation of antibody antagonists that preferentially bind activated integrin Mac-1 (alpha(M)beta(2)) and are potent in blocking neutrophil adhesion and migration. A novel strategy was developed for this task, consisting of yeast surface display of Mac-1 inserted (I) domain library, directed evolution to isolate active mutants of the I domain, and screening of phage display of human antibody library against the active I domain in yeast. Enriched antibody library was then introduced into yeast surface two-hybrid system for final quantitative selection of antibodies from monomeric antigen-antibody interaction. This led to highly efficient isolation of intermediate to high affinity antibodies, which preferentially reacted with the active I domain, antagonized the I domain binding to intercellular adhesion molecule (ICAM)-1, complement C3 fragment iC3b, and fibronectin, and potently inhibited neutrophil migration on fibrinogen. The strategy demonstrated herein can be broadly applicable to developing antibodies against modular domains that switch between inactive and active conformations, particularly toward the discovery of antibody antagonists in therapeutic and diagnostic applications.


Subject(s)
Antibody Specificity , Epitopes/immunology , Macrophage-1 Antigen/immunology , Peptide Library , Saccharomyces cerevisiae/immunology , Cell Adhesion , Cell Movement , Humans , Ligands , Neutrophil Activation , Neutrophils/cytology , Neutrophils/immunology
19.
Nat Prod Res ; 37(24): 4239-4243, 2023.
Article in English | MEDLINE | ID: mdl-36794855

ABSTRACT

Solanum lyratum Thunb is a traditional Chinese medicinal with a significant clinical outcome for tumor treatment; however, chemicals or fractions separated from the herb did not exhibit strong and comparable efficacy. To investigate the potential synergy or antagonism among chemicals in the extract, we obtained the compounds solavetivone (SO), tigogenin (TI) and friedelin (FR) from the herb. The anti-tumor effects of these three monomer compounds alone or in combination with the anti-inflammatory compound DRG were also tested in this study. SO, FR and TI used alone did not inhibit the proliferation of A549 and HepG2 cells, but the combination of the three achieved 40% inhibition. In vitro anti-inflammatory analysis showed that DRG had a stronger anti-inflammatory effect than TS at the same concentration, and the combination of DRG with SO, FR or TI inhibited the anti-tumor effect of DRG. This is the first study that documented the synergistic and antagonistic interactions between different compounds in a single herb.


Subject(s)
Medicine, Chinese Traditional , Solanum , Humans , Solanum/chemistry , Hep G2 Cells , Anti-Inflammatory Agents/pharmacology
20.
J Am Chem Soc ; 134(36): 14642-5, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22888993

ABSTRACT

Helix-helix interactions are fundamental to many biological signals and systems and are found in homo- or heteromultimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six-helix bundles (6HBs) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Using a yeast surface two-hybrid (YS2H) system, a platform designed to detect protein-protein interactions occurring through a secretory pathway, we reconstituted 6HB complexes on the yeast surface, quantitatively measured the equilibrium and kinetic constants of soluble 6HB, and delineated the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for the facile characterization and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils.


Subject(s)
HIV Envelope Protein gp41/chemistry , Saccharomyces cerevisiae/chemistry , Two-Hybrid System Techniques , HIV/drug effects , Kinetics , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/virology
SELECTION OF CITATIONS
SEARCH DETAIL