Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(11): e2317430121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437540

ABSTRACT

Brown-and-white giant pandas (hereafter brown pandas) are distinct coat color mutants found exclusively in the Qinling Mountains, Shaanxi, China. However, its genetic mechanism has remained unclear since their discovery in 1985. Here, we identified the genetic basis for this coat color variation using a combination of field ecological data, population genomic data, and a CRISPR-Cas9 knockout mouse model. We de novo assembled a long-read-based giant panda genome and resequenced the genomes of 35 giant pandas, including two brown pandas and two family trios associated with a brown panda. We identified a homozygous 25-bp deletion in the first exon of Bace2, a gene encoding amyloid precursor protein cleaving enzyme, as the most likely genetic basis for brown-and-white coat color. This deletion was further validated using PCR and Sanger sequencing of another 192 black giant pandas and CRISPR-Cas9 edited knockout mice. Our investigation revealed that this mutation reduced the number and size of melanosomes of the hairs in knockout mice and possibly in the brown panda, further leading to the hypopigmentation. These findings provide unique insights into the genetic basis of coat color variation in wild animals.


Subject(s)
Ursidae , Animals , Mice , Ursidae/genetics , Peptide Hydrolases , Amyloid beta-Protein Precursor , Animals, Wild , Mice, Knockout
2.
Rev Med Virol ; 34(2): e2522, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348583

ABSTRACT

Recently, patients with Mpox breakthrough infection or reinfection were constantly reported. However, the induction, risk factors, and important clinical symptoms of breakthrough infection and reinfection of Mpox virus (MPXV), as well as the factors affecting the effectiveness of Mpox vaccine are not characterized. Herein, a literature review was preformed to summarize the risk factors and important clinical symptoms of patients with Mpox breakthrough infection or reinfection, as well as the factors affecting the effectiveness of smallpox vaccine against Mpox. Results showed that MSM sexual behavior, condomless sexual behavior, multiple sexual partners, close contact, HIV infection, and the presence of comorbidity are important risk factors for Mpox breakthrough infection and reinfection. Genital ulcers, proctitis, and lymphadenopathy are the important clinical symptoms of Mpox breakthrough infection and reinfection. The effectiveness of emergent vaccination of smallpox vaccine for post-exposure of MPXV is associated with smallpox vaccination history, interval between exposure and vaccination, and history of HIV infection. This review provides a better understanding for the risk factors and important clinical symptoms of Mpox breakthrough infection and reinfection, as well as the formulation of Mpox vaccine vaccination strategies.


Subject(s)
HIV Infections , Mpox (monkeypox) , Smallpox Vaccine , Humans , Reinfection/epidemiology , Reinfection/prevention & control , Breakthrough Infections , HIV Infections/complications , HIV Infections/epidemiology , Antigens, Viral
3.
Plant J ; 116(1): 87-99, 2023 10.
Article in English | MEDLINE | ID: mdl-37340958

ABSTRACT

Nitrogen (N) is a vital major nutrient for rice (Oryza sativa). Rice responds to different applications of N by altering its root morphology, including root elongation. Although ammonium ( NH 4 + ) is the primary source of N for rice, NH 4 + is toxic to rice roots and inhibits root elongation. However, the precise molecular mechanism that NH 4 + -inhibited root elongation of rice is not well understood. Here, we identified a rice T-DNA insert mutant of OsMADS5 with a longer seminal root (SR) under sufficient N conditions. Reverse-transcription quantitative PCR analysis revealed that the expression level of OsMADS5 was increased under NH 4 + compared with NO 3 - supply. Under NH 4 + conditions, knocking out OsMADS5 (cas9) produced a longer SR, phenocopying osmads5, while there was no significant difference in SR length between wild-type and cas9 under NO 3 - supply. Moreover, OsMADS5-overexpression plants displayed the opposite SR phenotype. Further study demonstrated that enhancement of OsMADS5 by NH 4 + supply inhibited rice SR elongation, likely by reducing root meristem activity of root tip, with the involvement of OsCYCB1;1. We also found that OsMADS5 interacted with OsSPL14 and OsSPL17 (OsSPL14/17) to repress their transcriptional activation by attenuating DNA binding ability. Moreover, loss of OsSPL14/17 function in osmads5 eliminated its stimulative effect on SR elongation under NH 4 + conditions, implying OsSPL14/17 may function downstream of OsMADS5 to mediate rice SR elongation under NH 4 + supply. Overall, our results indicate the existence of a novel modulatory pathway in which enhancement of OsMADS5 by NH 4 + supply represses the transcriptional activities of OsSPL14/17 to restrict SR elongation of rice.


Subject(s)
Ammonium Compounds , Oryza , Meristem/metabolism , Oryza/metabolism , Plant Roots/metabolism , Ammonium Compounds/metabolism , Cell Proliferation , Gene Expression Regulation, Plant
4.
Clin Immunol ; 265: 110300, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950722

ABSTRACT

A comprehensive analysis of spatial transcriptomics was carried out to better understand the progress of halo nevus. We found that halo nevus was characterized by overactive immune responses, triggered by chemokines and dendritic cells (DCs), T cells, and macrophages. Consequently, we observed abnormal cell death, such as apoptosis and disulfidptosis in halo nevus, some were closely related to immunity. Interestingly, we identified aberrant metabolites such as uridine diphosphate glucose (UDP-G) within the halo nevus. UDP-G, accompanied by the infiltration of DCs and T cells, exhibited correlations with certain forms of cell death. Subsequent experiments confirmed that UDP-G was increased in vitiligo serum and could activate DCs. We also confirmed that oxidative response is an inducer of UDP-G. In summary, the immune response in halo nevus, including DC activation, was accompanied by abnormal cell death and metabolites. Especially, melanocyte-derived UDP-G may play a crucial role in DC activation.


Subject(s)
Dendritic Cells , Melanocytes , Nevus, Halo , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Melanocytes/metabolism , Melanocytes/immunology , Nevus, Halo/metabolism , Nevus, Halo/immunology , Uridine Diphosphate Glucose/metabolism , Vitiligo/immunology , Vitiligo/metabolism , Male , Female , Adult , Apoptosis , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Young Adult , Adolescent
5.
Clin Immunol ; 263: 110199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565329

ABSTRACT

Cell-cell communication is crucial for regulating signaling and cellular function. However, the precise cellular and molecular changes remain poorly understood in skin aging. Based on single-cell and bulk RNA data, we explored the role of cell-cell ligand-receptor interaction in skin aging. We found that the macrophage migration inhibitory factor (MIF)/CD74 ligand-receptor complex was significantly upregulatedin aged skin, showing the predominant paracrine effect of keratinocytes on fibroblasts. Enrichment analysis and in vitro experiment revealed a close association of the activation of the MIF/CD74 with inflammatory pathways and immune response. Mechanistically, MIF/CD74 could significantly inhibit PPARγ protein, which thus significantly increased the degree of fibroblast senescence, and significantly up-regulated the expression of senescence-associated secretory phenotype (SASP) factors and FOS gene. Therefore, our study reveals that MIF/CD74 inhibits the activation of the PPAR signaling pathway, subsequently inducing the production of SASP factors and the upregulation of FOS expression, ultimately accelerating fibroblast senescence.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Fibroblasts , Histocompatibility Antigens Class II , Macrophage Migration-Inhibitory Factors , Single-Cell Analysis , Skin Aging , Female , Humans , Male , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , Cells, Cultured , Cellular Senescence/genetics , Fibroblasts/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Keratinocytes/metabolism , Keratinocytes/immunology , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis/methods , Skin/metabolism , Skin/immunology , Skin Aging/genetics , Skin Aging/physiology , Animals , Mice
6.
Exp Dermatol ; 33(8): e15165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39171634

ABSTRACT

Phenylalanine is a crucial amino acid in the process of melanogenesis. However, the exact mechanism by which it is transported into melanocytes has not been disclosed. The aim of this study was to identify and examine the key transporters that are responsible for phenylalanine transportation and evaluate their significance in melanogenesis. The amino acid transporter SLC16A10 was found to be up-regulated in both melasma (GSE72140) and sun-exposed skin (GSE67098). The protein levels of SLC16A10 were proportional to the melanin content in melanocytic nevi, indicating that SLC16A10 was related to melanogenesis. After SLC16A10 overexpression, melanin increased significantly in MNT1 cells. Meanwhile, the expression of melanogenesis-related proteins such as TYR and TYRP1 increased, while their RNA levels did not change. Transcriptomics data indicated that SLC16A10 can enhance the function of ribosome. Furthermore, targeted metabolomics data and ELISA results demonstrated SLC16A10 mainly affected the transport of phenylalanine into the cells. Then, phenylalanine was added to the cell culture medium after SLC16A10 overexpression, melanin synthesis in cells furtherly increased, which verified that SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine. Finally, we found that SLC16A10 expression increased after UVB irradiation. Knockdown SLC16A10 reduced UVB-induced melanin production and phenylalanine uptake by cells. In summary, SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine, and upregulation SLC16A10 is likely responsible for the UVB-induced hyperpigmentation as well.


Subject(s)
Melanocytes , Melanogenesis , Phenylalanine , Humans , Biological Transport , Melanocytes/metabolism , Melanogenesis/physiology , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Nevus, Pigmented/metabolism , Nevus, Pigmented/genetics , Phenylalanine/metabolism , Up-Regulation
7.
Environ Sci Technol ; 58(27): 12225-12236, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38885124

ABSTRACT

Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H+, contributing to more than 35.6% of H2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.


Subject(s)
Borohydrides , Boron , Iron , Iron/chemistry , Borohydrides/chemistry , Boron/chemistry , Chromium/chemistry , Electrons , Alloys/chemistry
8.
J Adolesc ; 96(1): 196-208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37908044

ABSTRACT

BACKGROUND: The adaptation of students to academic challenges in high school is crucial for academic performance. This study proposes the concept of "learning crafting," a previously under-researched area, and investigates its associated variables. METHODS: Using a diary method, we studied 187 Chinese high school students (64% female; Mage = 15.57) over a 9-day period. We examined the effect of daily life events on learning crafting, and considered academic emotions as mediators and regulatory focus as moderators. RESULTS: Hierarchical linear modeling revealed that daily positive events were positively correlated with learning crafting at both within-person and between-person levels. Positive academic emotions served as mediators of this relationship. Furthermore, promotion focus had a positive moderating effect on the relationship between daily positive events and positive academic emotions. Conversely, daily negative events were only negatively correlated with learning crafting at the between-person level, and no additional significant relationships were identified. CONCLUSION: This study elucidated the effect of daily life events on learning crafting, its mediating mechanisms, and conditional factors. These results not only contribute to crafting theory, but also provide theoretical underpinnings for future interventions targeting high school students' learning crafting.


Subject(s)
Academic Performance , Emotions , Humans , Female , Adolescent , Male , Surveys and Questionnaires , Students , Schools
9.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062822

ABSTRACT

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Subject(s)
Flagella , Symbiosis , Type III Secretion Systems , Flagella/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Xenorhabdus/metabolism , Xenorhabdus/genetics , Xenorhabdus/physiology , Gene Expression Regulation, Bacterial , Photorhabdus/metabolism , Photorhabdus/pathogenicity , Photorhabdus/genetics , Photorhabdus/physiology , Nematoda/microbiology , Nematoda/metabolism , Biofilms/growth & development
10.
J Cell Physiol ; 238(9): 2161-2171, 2023 09.
Article in English | MEDLINE | ID: mdl-37417881

ABSTRACT

Ultraviolet (UV) radiation is the primary exogenous inducer of skin pigmentation, although the mechanism has not been fully elucidated. N6-methyladenosine (m6 A) modification is one of the key epigenetic form of gene regulation that affects multiple biological processes. The aim of this study was to explore the role and underlying mechanisms of m6 A modification in UVB-induced melanogenesis. Low-dose UVB increased global m6 A modification in melanocytes (MCs) and MNT1 melanoma cell line. The GEPIA database predicted that methyltransferase METTL3 is positively correlated with the melanogenic transcription factor MITF in the sun-exposed skin tissues. After METTL3 respectively overexpressed and knocked down in the MNT1, the melanin content and melanogenesis-related genes were significantly upregulated after overexpression of METTL3, especially with UVB irradiation, and downregulated after METTL3 knockdown. METTL3 levels were also higher in melanocytic nevi with high melanin content. METTL3 overexpression and knockdown also altered the protein level of YAP1. SRAMP analysis predicted four high-potential m6 A modification sites on YAP1 mRNA, of which three were confirmed by methylated RNA immunoprecipitation. Inhibition of YAP1 expression can partially reverse melanogenesis induced by overexpression of METTL3. In conclusion, UVB irradiation promotes global m6 A modification in MCs and upregulates METTL3, which increases the expression level of YAP1 through m6 A modification, thereby activating the co-transcription factor TEAD1 and promoting melanogenesis.


Subject(s)
Melanins , Melanocytes , Methyltransferases , Humans , Melanins/biosynthesis , Melanocytes/metabolism , Melanocytes/radiation effects , Methyltransferases/genetics , Methyltransferases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ultraviolet Rays , Cell Line, Tumor
11.
Mol Biol Evol ; 39(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35599233

ABSTRACT

Incorrect species delimitation will lead to inappropriate conservation decisions, especially for threatened species. The takin (Budorcas taxicolor) is a large artiodactyl endemic to the Himalayan-Hengduan-Qinling Mountains and is well known for its threatened status and peculiar appearance. However, the speciation, intraspecies taxonomy, evolutionary history, and adaptive evolution of this species still remain unclear, which greatly hampers its scientific conservation. Here, we de novo assembled a high-quality chromosome-level genome of takin and resequenced the genomes of 75 wild takins. Phylogenomics revealed that takin was positioned at the root of Caprinae. Population genomics based on the autosome, X chromosome, and Y chromosome SNPs and mitochondrial genomes consistently revealed the existence of two phylogenetic species and recent speciation in takins: the Himalayan takin (B. taxicolor) and the Chinese takin (B. tibetana), with the support of morphological evidence. Two genetically divergent subspecies were identified in both takin species, rejecting three previously proposed taxonomical viewpoints. Furthermore, their distribution boundaries were determined, suggesting that large rivers play important roles in shaping the genetic partition. Compared with the other subspecies, the Qinling subspecies presented the lowest genomic diversity, higher linkage disequilibrium, inbreeding, and genetic load, thus is in urgent need of genetic management and protection. Moreover, coat color gene (PMEL) variation may be responsible for the adaptive coat color difference between the two species following Gloger's rule. Our findings provide novel insights into the recent speciation, local adaptation, scientific conservation of takins, and biogeography of the Himalaya-Hengduan biodiversity hotspot.


Subject(s)
Genome, Mitochondrial , Ruminants , Animals , Endangered Species , Genetic Speciation , Genomics , Phylogeny , Ruminants/genetics
12.
Plant Cell Environ ; 46(11): 3558-3574, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37545348

ABSTRACT

Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.


Subject(s)
Medicago truncatula , Nitrogen Fixation , Nitrogen Fixation/genetics , Root Nodules, Plant/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Symbiosis/genetics , Sulfates/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Exp Dermatol ; 32(4): 310-323, 2023 04.
Article in English | MEDLINE | ID: mdl-36394984

ABSTRACT

The Koebner phenomenon, also known as isomorphic reaction, refers to the development of secondary lesions with the same clinical manifestations and histopathological characteristics as the primary lesions in normal skin after trauma or other stimuli. The triggering factors of Koebner phenomenon include physical trauma, chemical stimulation, mechanical stress, iatrogenic stimulation and pathogenic infection. Vitiligo, psoriasis and lichen planus are considered true Koebner phenomenon. Recent studies have shown that immunological disorders, oxidative stress, defective melanocyte adhesion and growth factor deficiency are the main pathological mechanisms of vitiligo Koebner phenomenon. In psoriasis, triggers may drive skin inflammation to induce a psoriatic phenotype through multiple signalling pathways and thereby cause Koebner phenomenon in susceptible individuals. Significantly, keratinocytes mediate the occurrence of Koebner phenomenon in psoriasis through mechano-induced signalling pathways after sensing mechanical signals and explains the high frequency of psoriasis lesions on the extensor side of the elbow and knee joints. On the contrary, TRPA1-driven mechano-transduction, autoimmunity and actinic damage are the underlying mechanisms of Koebner phenomenon in lichen planus. In this review, we have summarized the current understanding of the characteristics and pathogenesis of Koebner phenomenon.


Subject(s)
Dermatitis , Lichen Planus , Psoriasis , Vitiligo , Humans , Vitiligo/complications , Psoriasis/pathology
14.
Cell Commun Signal ; 21(1): 332, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37986081

ABSTRACT

Anemia is the most common manifestation in myelodysplastic syndrome (MDS) patients, but the cause of ineffective hematopoiesis is not fully understood. Enucleation is an important event in the maturation process of erythroblasts. According to a series of morphological phenotypes of the pathological development of MDS erythroblasts, we speculate that there may be enucleation disorders. To verify this hypothesis, we cultured MDS bone marrow CD34+ cells in vitro and induced erythroblast development. The results showed that erythroblast enucleation in MDS was significantly lower than that in the normal group, and the rate of enucleation was positively correlated with hemoglobin concentration. Risk stratification of MDS was performed to further analyze the differences in enucleation among the normal group, low-middle risk group and high-risk group. The results showed that the enucleation rate of the high risk group was higher than that of the low-middle risk group but still lower than that of the normal group. Moreover, the expression of pERK and pAKT in MDS erythroblasts in the high risk group was higher than that in the normal group, while the expression of pERK and pAKT in the low-middle risk group was lower than that in the normal group. Furthermore, the enucleation of MDS was positively correlated with the phosphorylation degree of ERK and AKT. In conclusion, this study reveals that the enucleation of erythroblasts is one of the possible causes of anemia in MDS. Video Abstract.


Subject(s)
Anemia , Myelodysplastic Syndromes , Humans , Erythroblasts/metabolism , Erythroblasts/pathology , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/metabolism , Anemia/complications , Anemia/metabolism , Anemia/pathology , Risk Factors , Bone Marrow Cells/pathology
15.
J Fish Dis ; 46(2): 99-112, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36263741

ABSTRACT

The Streptomyces lateritius Z1-26 was isolated from soil samples which showed broad-spectrum antibacterial activity against a broad range of fish pathogens. The In Vivo Imaging System (IVIS) monitored that strain Z1-26 could survive and colonize in the gills and abdomen of crucian carp. The effects of dietary supplementation with strain Z1-26 were evaluated with respect to the growth performance, antioxidant capacity, and immune response of crucian carp. The results showed that the Z1-26-fed fish had a significantly higher growth rate than the fish fed the control diet. The immune and antioxidant parameters revealed that the non-specific immune indicators (AKP, SOD, and LZM) of the serum, the expression of immune-related genes (IgM, C3, and LZM), and antioxidant-related genes (Nrf2 and Keap1) of the immune organs were significantly increased, whereas the expression of pro-inflammatory factors (IL-1ß, IL-8, and TNF-α) of the immune organs was significantly down-regulated in crucian carp fed strain Z1-26 compared with fish fed a control diet. Moreover, fish fed with Z1-26 supplemented diets showed a significantly improved survival rate after Aeromonas hydrophila infection. In addition, the whole genome analysis showed that strain Z1-26 possesses 28 gene clusters, including 6 polyketide synthetase (PKS), 4 non-ribosomal peptide-synthetase (NRPS), 1 bacteriocin, and 1 lantipeptide. In summary, these results indicated that strain Z1-26 could improve the growth performance and disease resistance in crucian carp, and has the potential to be developed as a candidate probiotics for the control of bacterial diseases in aquaculture.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Goldfish/genetics , Carps/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/metabolism , Fish Diseases/microbiology , NF-E2-Related Factor 2/metabolism , Diet , Anti-Bacterial Agents/pharmacology , Aeromonas hydrophila/physiology , Fish Proteins/genetics , Animal Feed/analysis
16.
Mol Biol Evol ; 38(2): 531-544, 2021 01 23.
Article in English | MEDLINE | ID: mdl-32960966

ABSTRACT

Antagonistic coevolution between host and parasite drives species evolution. However, most of the studies only focus on parasitism adaptation and do not explore the coevolution mechanisms from the perspective of both host and parasite. Here, through the de novo sequencing and assembly of the genomes of giant panda roundworm, red panda roundworm, and lion roundworm parasitic on tiger, we investigated the genomic mechanisms of coevolution between nonmodel mammals and their parasitic roundworms and those of roundworm parasitism in general. The genome-wide phylogeny revealed that these parasitic roundworms have not phylogenetically coevolved with their hosts. The CTSZ and prolyl 4-hydroxylase subunit beta (P4HB) immunoregulatory proteins played a central role in protein interaction between mammals and parasitic roundworms. The gene tree comparison identified that seven pairs of interactive proteins had consistent phylogenetic topology, suggesting their coevolution during host-parasite interaction. These coevolutionary proteins were particularly relevant to immune response. In addition, we found that the roundworms of both pandas exhibited higher proportions of metallopeptidase genes, and some positively selected genes were highly related to their larvae's fast development. Our findings provide novel insights into the genetic mechanisms of coevolution between nonmodel mammals and parasites and offer the valuable genomic resources for scientific ascariasis prevention in both pandas.


Subject(s)
Ascaridoidea/genetics , Biological Coevolution , Genome, Helminth , Host-Parasite Interactions/genetics , Tigers/parasitology , Ursidae/parasitology , Animals , Phylogeny , Protein Interaction Maps , Selection, Genetic , Tigers/genetics , Tigers/metabolism , Ursidae/genetics , Ursidae/metabolism
17.
Microb Pathog ; 169: 105646, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35716927

ABSTRACT

Aeromonas veronii AvX005 is a pathogenic bacterium with high toxicity to grass carp (Ctenopharyngodon idellus). The expression levels of g-type (goose-type lysozyme, Lys-g) and c-type lysozyme (chicken-type lysozyme, Lys-c) in the spleen of grass carp infected with AvX005 were significantly increased by approximately 4.5 times and 27 times, respectively. The recombinant proteins rLys-g and rLys-c produced in a recombinant expression system of Escherichia coli showed significant antibacterial activity against the pathogenic bacteria AvX005. A challenge test was conducted after rLys-g and rLys-c were expressed in grass carp L8824 liver cells, and compared with the survival rate of the control cells (46.3%), the survival rate of the experimental cells (77.6% for rLys-g and 68.6% for rLys-c) was significantly increased. Grass carp were infected with AvX005 on the second day after delivering pcDNA3.1-lys-g and pcDNA-lys-c with the Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant, and both pcDNA3.1-lys-g and pcDNA-lys-c provided 70% relative protection for grass carp. The activity of lysozyme and alkaline phosphatase in the serum of grass carp was significantly increased after injection of DNA. The expression of the immune factors IgM, C3 and IL8 in the kidney was upregulated to varying degrees for pcDNA3.1-lys-g and immune factors C3 and IgM was upregulated for pcDNA-lys-c. The results indicated that pcDNA3.1-lys-g and pcDNA-lys-c may be used as immunostimulants to protect grass carp from the pathogenic bacterium AvX005.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Acrylic Resins , Adjuvants, Immunologic/pharmacology , Aeromonas hydrophila/physiology , Aeromonas veronii , Animals , Carps/metabolism , Cholesterol , Fish Diseases/microbiology , Immunity, Innate , Immunoglobulin M , Muramidase/genetics , Muramidase/pharmacology , Quillaja Saponins
18.
J Nat Prod ; 85(4): 838-845, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35290062

ABSTRACT

Hyperpigmented skin diseases such as melasma, freckles, and melanosis usually mar the appearance of patients. Traditional herbal medicines are highly accepted in inhibiting skin pigmentation, with advantages of high efficiency, low cost, and low side effects. Selaginellin (SEL), one of the active compounds of selaginella, has been proved to be exhibit antineoplastic, antioxidant, antisenescence, and antiapoptosis activities. In this study, we found that SEL can inhibit melanogenesis in vitro and in vivo. A mechanism study found that SEL inhibits melanogenesis through inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway, then down-regulating the expression of microphthalmia-associated transcription factor (MITF) and downstream genes tyrosinase (TYR) and tyrosinase-related protein 2 (TYRP2). UVB-activated paracrine function of fibroblasts and keratinocytes promotes melanogenesis of melanocytes. Interestingly, SEL antagonizes UVB-activated paracrine function of fibroblasts and keratinocytes. These findings indicate that SEL can be a potential whitening compound to inhibit melanogenesis.


Subject(s)
Melanins , Mitogen-Activated Protein Kinases , Humans , Melanocytes , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mitogen-Activated Protein Kinases/metabolism , Monophenol Monooxygenase/metabolism , Signal Transduction
19.
Appl Microbiol Biotechnol ; 106(2): 647-661, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35019997

ABSTRACT

Filamentous fungi are extensively used as an important expression host for the production of a variety of essential industrial proteins. They have significant promise as an expression system for protein synthesis due to their inherent superior secretory capabilities. The purpose of this study was to develop a novel expression system by utilizing a Penicillium oxalicum strain that possesses a high capacity for protein secretion. The expression of glycoside hydrolases in P. oxalicum was evaluated in a cleaner extracellular background where the formation of two major amylases was inhibited. Four glycoside hydrolases (CBHI, Amy15B, BGL1, and Cel12A) were expressed under the highly constitutive promoter PubiD. It was found that the proteins exhibited high purity in the culture supernatant after cultivation with starch. Two inducible promoters, Pamy15A and PempA, under the activation of the transcription factor AmyR were used as elements in the construction of versatile vectors. When using the cellobiohydrolase CBHI as the extracellular quantitative reporter, the empA promoter screened from the AmyR-overexpressing strain was shown to be superior to the amy15A promoter based on RNA-sequencing data. Therefore, we designed an expression system consisting of a cleaner background host strain and an adjustable promoter. This system enables rapid and high-throughput evaluation of glycoside hydrolases from filamentous fungi.Key points• A new protein expression system derived from Penicillium oxalicum has been developed.• The expression platform is capable of secreting recombinant proteins with high purity.• The adjustable promoter may allow for further optimization of recombinant protein synthesis.


Subject(s)
Fungal Proteins , Penicillium , Amylases/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/metabolism , Glycoside Hydrolases/genetics , Penicillium/genetics , Penicillium/metabolism , Promoter Regions, Genetic
20.
Appl Microbiol Biotechnol ; 106(23): 7857-7866, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36326838

ABSTRACT

Xenorhabdus can produce a large number of secondary metabolites with insecticidal, bacteriostatic, and antitumor activities. Efficient gene editing tools will undoubtedly facilitate the functional genomics research and bioprospecting in Xenorhabdus. In this study, BlastP analysis using the amino acid sequences of Redαß or RecET recombinases as queries resulted in the identification of an operon (XBJ1_operon 0213) containing RecET-like recombinases encoding genes from the genome of Xenorhabdus bovienii strain SS-2004. Three proteins encoded by this operon was indispensable for full activity of recombineering, namely XBJ1-1173 (RecE-like protein), XBJ1-1172 (RecT-like protein), and XBJ1-1171 (single-strand annealing protein). Using this newly developed recombineering system, a gene cluster responsible for biosynthesis of a novel secondary metabolite (Min16) was identified from X. stockiae HN_xs01 strain. Min16 which exhibited antibacterial and cytotoxic activities was determined to be a cyclopeptide composed of Acyl-Phe-Thr-Phe-Pro-Pro-Leu-Val by using high-resolution mass spectrometry and nuclear magnetic resonance analysis, and was designated as changshamycin. This host-specific recombineering system was proven to be effective for gene editing in Xenorhabdus, allowing for efficient discovery of novel natural products with attractive bioactivities. KEY POINTS: • Screening and identification of efficient gene editing tools from Xenorhabdus • Optimization of the Xenorhabdus electroporation parameters • Discovery of a novel cyclopeptide compound with multiple biological activities.


Subject(s)
Biological Products , Xenorhabdus , Xenorhabdus/genetics , Recombinases/genetics , Recombinases/metabolism , Biological Products/metabolism , Operon , Peptides, Cyclic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL