Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 183(2): 347-362.e24, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33064988

ABSTRACT

Neoantigens arise from mutations in cancer cells and are important targets of T cell-mediated anti-tumor immunity. Here, we report the first open-label, phase Ib clinical trial of a personalized neoantigen-based vaccine, NEO-PV-01, in combination with PD-1 blockade in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. This analysis of 82 patients demonstrated that the regimen was safe, with no treatment-related serious adverse events observed. De novo neoantigen-specific CD4+ and CD8+ T cell responses were observed post-vaccination in all of the patients. The vaccine-induced T cells had a cytotoxic phenotype and were capable of trafficking to the tumor and mediating cell killing. In addition, epitope spread to neoantigens not included in the vaccine was detected post-vaccination. These data support the safety and immunogenicity of this regimen in patients with advanced solid tumors (Clinicaltrials.gov: NCT02897765).


Subject(s)
Cancer Vaccines/immunology , Immunotherapy/methods , Precision Medicine/methods , Aged , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Female , Humans , Kaplan-Meier Estimate , Male , Melanoma/drug therapy , Melanoma/immunology , Middle Aged , Mutation , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/immunology
2.
Cell ; 168(4): 707-723, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187290

ABSTRACT

Cancer immunotherapy can induce long lasting responses in patients with metastatic cancers of a wide range of histologies. Broadening the clinical applicability of these treatments requires an improved understanding of the mechanisms limiting cancer immunotherapy. The interactions between the immune system and cancer cells are continuous, dynamic, and evolving from the initial establishment of a cancer cell to the development of metastatic disease, which is dependent on immune evasion. As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.


Subject(s)
Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Animals , Drug Therapy, Combination , Humans , Molecular Targeted Therapy , T-Lymphocytes/immunology
3.
Cell ; 165(1): 35-44, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26997480

ABSTRACT

PD-1 immune checkpoint blockade provides significant clinical benefits for melanoma patients. We analyzed the somatic mutanomes and transcriptomes of pretreatment melanoma biopsies to identify factors that may influence innate sensitivity or resistance to anti-PD-1 therapy. We find that overall high mutational loads associate with improved survival, and tumors from responding patients are enriched for mutations in the DNA repair gene BRCA2. Innately resistant tumors display a transcriptional signature (referred to as the IPRES, or innate anti-PD-1 resistance), indicating concurrent up-expression of genes involved in the regulation of mesenchymal transition, cell adhesion, extracellular matrix remodeling, angiogenesis, and wound healing. Notably, mitogen-activated protein kinase (MAPK)-targeted therapy (MAPK inhibitor) induces similar signatures in melanoma, suggesting that a non-genomic form of MAPK inhibitor resistance mediates cross-resistance to anti-PD-1 therapy. Validation of the IPRES in other independent tumor cohorts defines a transcriptomic subset across distinct types of advanced cancer. These findings suggest that attenuating the biological processes that underlie IPRES may improve anti-PD-1 response in melanoma and other cancer types.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Melanoma/drug therapy , Neoplasm Metastasis/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents/adverse effects , BRCA2 Protein/genetics , Humans , MAP Kinase Signaling System/drug effects , Melanoma/genetics , Neoplasm Metastasis/genetics , Nivolumab , Transcriptome
5.
N Engl J Med ; 388(9): 813-823, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36856617

ABSTRACT

BACKGROUND: Whether pembrolizumab given both before surgery (neoadjuvant therapy) and after surgery (adjuvant therapy), as compared with pembrolizumab given as adjuvant therapy alone, would increase event-free survival among patients with resectable stage III or IV melanoma is unknown. METHODS: In a phase 2 trial, we randomly assigned patients with clinically detectable, measurable stage IIIB to IVC melanoma that was amenable to surgical resection to three doses of neoadjuvant pembrolizumab, surgery, and 15 doses of adjuvant pembrolizumab (neoadjuvant-adjuvant group) or to surgery followed by pembrolizumab (200 mg intravenously every 3 weeks for a total of 18 doses) for approximately 1 year or until disease recurred or unacceptable toxic effects developed (adjuvant-only group). The primary end point was event-free survival in the intention-to-treat population. Events were defined as disease progression or toxic effects that precluded surgery; the inability to resect all gross disease; disease progression, surgical complications, or toxic effects of treatment that precluded the initiation of adjuvant therapy within 84 days after surgery; recurrence of melanoma after surgery; or death from any cause. Safety was also evaluated. RESULTS: At a median follow-up of 14.7 months, the neoadjuvant-adjuvant group (154 patients) had significantly longer event-free survival than the adjuvant-only group (159 patients) (P = 0.004 by the log-rank test). In a landmark analysis, event-free survival at 2 years was 72% (95% confidence interval [CI], 64 to 80) in the neoadjuvant-adjuvant group and 49% (95% CI, 41 to 59) in the adjuvant-only group. The percentage of patients with treatment-related adverse events of grades 3 or higher during therapy was 12% in the neoadjuvant-adjuvant group and 14% in the adjuvant-only group. CONCLUSIONS: Among patients with resectable stage III or IV melanoma, event-free survival was significantly longer among those who received pembrolizumab both before and after surgery than among those who received adjuvant pembrolizumab alone. No new toxic effects were identified. (Funded by the National Cancer Institute and Merck Sharp and Dohme; S1801 ClinicalTrials.gov number, NCT03698019.).


Subject(s)
Antineoplastic Agents, Immunological , Melanoma , Neoadjuvant Therapy , Skin Neoplasms , Humans , Adjuvants, Immunologic , Disease Progression , Melanoma/drug therapy , Melanoma/pathology , Melanoma/surgery , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/surgery , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Chemotherapy, Adjuvant
6.
Oncologist ; 29(5): 415-421, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38330451

ABSTRACT

PURPOSE: Immune checkpoint inhibitors (ICIs) have significantly improved the survival of patients with cancer and provided long-term durable benefit. However, ICI-treated patients develop a range of toxicities known as immune-related adverse events (irAEs), which could compromise clinical benefits from these treatments. As the incidence and spectrum of irAEs differs across cancer types and ICI agents, it is imperative to characterize the incidence and spectrum of irAEs in a pan-cancer cohort to aid clinical management. DESIGN: We queried >400 000 trials registered at ClinicalTrials.gov and retrieved a comprehensive pan-cancer database of 71 087 ICI-treated participants from 19 cancer types and 7 ICI agents. We performed data harmonization and cleaning of these trial results into 293 harmonized adverse event categories using Medical Dictionary for Regulatory Activities. RESULTS: We developed irAExplorer (https://irae.tanlab.org), an interactive database that focuses on adverse events in patients administered with ICIs from big data mining. irAExplorer encompasses 71 087 distinct clinical trial participants from 343 clinical trials across 19 cancer types with well-annotated ICI treatment regimens and harmonized adverse event categories. We demonstrated a few of the irAE analyses through irAExplorer and highlighted some associations between treatment- or cancer-specific irAEs. CONCLUSION: The irAExplorer is a user-friendly resource that offers exploration, validation, and discovery of treatment- or cancer-specific irAEs across pan-cancer cohorts. We envision that irAExplorer can serve as a valuable resource to cross-validate users' internal datasets to increase the robustness of their findings.


Subject(s)
Clinical Trials as Topic , Data Mining , Drug-Related Side Effects and Adverse Reactions , Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Drug-Related Side Effects and Adverse Reactions/epidemiology , Big Data , Databases, Factual/statistics & numerical data
7.
Nature ; 553(7688): 347-350, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29320474

ABSTRACT

Desmoplastic melanoma is a rare subtype of melanoma characterized by dense fibrous stroma, resistance to chemotherapy and a lack of actionable driver mutations, and is highly associated with ultraviolet light-induced DNA damage. We analysed sixty patients with advanced desmoplastic melanoma who had been treated with antibodies to block programmed cell death 1 (PD-1) or PD-1 ligand (PD-L1). Objective tumour responses were observed in forty-two of the sixty patients (70%; 95% confidence interval 57-81%), including nineteen patients (32%) with a complete response. Whole-exome sequencing revealed a high mutational load and frequent NF1 mutations (fourteen out of seventeen cases) in these tumours. Immunohistochemistry analysis from nineteen desmoplastic melanomas and thirteen non-desmoplastic melanomas revealed a higher percentage of PD-L1-positive cells in the tumour parenchyma in desmoplastic melanomas (P = 0.04); these cells were highly associated with increased CD8 density and PD-L1 expression in the tumour invasive margin. Therefore, patients with advanced desmoplastic melanoma derive substantial clinical benefit from PD-1 or PD-L1 immune checkpoint blockade therapy, even though desmoplastic melanoma is defined by its dense desmoplastic fibrous stroma. The benefit is likely to result from the high mutational burden and a frequent pre-existing adaptive immune response limited by PD-L1 expression.


Subject(s)
Immunotherapy , Melanoma/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Biopsy , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Cycle Checkpoints , Humans , Melanoma/genetics , Melanoma/metabolism , Mutation/genetics , Neurofibromin 1/genetics , Programmed Cell Death 1 Receptor/metabolism , Retrospective Studies
8.
Future Oncol ; 17(11): 1401-1439, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33475012

ABSTRACT

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various cancers by reversing the immunosuppressive mechanisms employed by tumors to restore anticancer immunity. Although ICIs have demonstrated substantial clinical efficacy, patient response can vary in depth and duration, and many do not respond at all or eventually develop resistance. ICI resistance mechanisms can be tumor-intrinsic, related to the tumor microenvironment or patient-specific factors. Multiple resistance mechanisms may be present within one tumor subtype, or heterogeneity exists among patients with the same tumor type. Consequently, designing effective combination treatment strategies is challenging. This review will discuss ICI resistance mechanisms, and summarize findings from key preclinical and clinical trials of ICIs, to identify potential treatment strategies or pathways to overcome ICI resistance.


Subject(s)
Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors/therapeutic use , Antigens, Neoplasm/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
9.
Proc Natl Acad Sci U S A ; 115(45): E10702-E10711, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30348802

ABSTRACT

Tumor-specific T cell receptor (TCR) gene transfer enables specific and potent immune targeting of tumor antigens. Due to the prevalence of the HLA-A2 MHC class I supertype in most human populations, the majority of TCR gene therapy trials targeting public antigens have employed HLA-A2-restricted TCRs, limiting this approach to those patients expressing this allele. For these patients, TCR gene therapy trials have resulted in both tantalizing successes and lethal adverse events, underscoring the need for careful selection of antigenic targets. Broad and safe application of public antigen-targeted TCR gene therapies will require (i) selecting public antigens that are highly tumor-specific and (ii) targeting multiple epitopes derived from these antigens by obtaining an assortment of TCRs restricted by multiple common MHC alleles. The canonical cancer-testis antigen, NY-ESO-1, is not expressed in normal tissues but is aberrantly expressed across a broad array of cancer types. It has also been targeted with A2-restricted TCR gene therapy without adverse events or notable side effects. To enable the targeting of NY-ESO-1 in a broader array of HLA haplotypes, we isolated TCRs specific for NY-ESO-1 epitopes presented by four MHC molecules: HLA-A2, -B07, -B18, and -C03. Using these TCRs, we pilot an approach to extend TCR gene therapies targeting NY-ESO-1 to patient populations beyond those expressing HLA-A2.


Subject(s)
Homeodomain Proteins/immunology , Major Histocompatibility Complex/immunology , Receptors, Antigen, T-Cell/isolation & purification , Receptors, Antigen, T-Cell/metabolism , Animals , Cloning, Molecular , Humans
10.
Semin Immunol ; 28(1): 73-80, 2016 02.
Article in English | MEDLINE | ID: mdl-26861544

ABSTRACT

Targeted therapies have induced high response rates and improved survival in patients with cancer. However, the long-term effectiveness of targeted therapies has been limited by the development of acquired resistance in the majority of patients. On the other hand, the modern immunotherapy strategies have been associated with durable responses but in limited number of patients. Accordingly, research efforts have been focused on examining the effects of combinations of targeted therapy and immunotherapy in several different histological subtypes of cancer. There has been accumulated evidence to suggest that targeted therapy can induce immune effects in the tumor cells, the host immune system, and the tumor microenvironment. Subsequently, clinical trials have been designed to examine the efficacy of combining immune checkpoint blockade or adoptive cell transfer with tyrosine kinase inhibitors, HER family blockade, anti-angiogenic agents, histone deacetylase inhibitors, and cancer stem cell inhibitors. To date, the combination of immunotherapy with targeted therapy has demonstrated potential as a cancer treatment strategy, but further optimizations are required and caution must be taken to avoid toxicity. The current review summarizes existing evidence and provides rationale supporting the use of combined targeted and immune-therapy approaches in patients with different types of cancer.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Cancer Vaccines/immunology , Immunotherapy, Adoptive/methods , Molecular Targeted Therapy , Neoplasms/therapy , Tumor Microenvironment/drug effects , Clinical Trials as Topic , Combined Modality Therapy , Histone Deacetylase Inhibitors/therapeutic use , Humans , Neoplasms/immunology , Neoplastic Stem Cells/physiology , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-2/antagonists & inhibitors
11.
N Engl J Med ; 375(9): 819-29, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27433843

ABSTRACT

BACKGROUND: Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. METHODS: We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later. RESULTS: Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. CONCLUSIONS: In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.).


Subject(s)
Drug Resistance, Neoplasm/genetics , Immunotherapy , Janus Kinase 1/genetics , Janus Kinase 2/genetics , Melanoma/genetics , Mutation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , beta 2-Microglobulin/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Biopsy , Exome , Gene Expression Regulation, Neoplastic , Genes, MHC Class I , Humans , Interferon-gamma/therapeutic use , Melanoma/drug therapy , Melanoma/secondary , Programmed Cell Death 1 Receptor/metabolism , Recurrence , Sequence Analysis, DNA , Signal Transduction
12.
BMC Cancer ; 15: 356, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25939769

ABSTRACT

BACKGROUND: Malignant melanoma is an aggressive tumor type that often develops drug resistance to targeted therapeutics. The production of colony stimulating factor 1 (CSF-1) in tumors recruits myeloid cells such as M2-polarized macrophages and myeloid derived suppressor cells (MDSC), leading to an immune suppressive tumor milieu. METHODS: We used the syngeneic mouse model of BRAF (V600E) -driven melanoma SM1, which secretes CSF-1, to evaluate the ability of the CSF-1 receptor (CSF-1R) inhibitor PLX3397 to improve the antitumor efficacy of the oncogenic BRAF inhibitor vemurafenib. RESULTS: Combined BRAF and CSF-1R inhibition resulted in superior antitumor responses compared with either therapy alone. In mice receiving PLX3397 treatment, a dramatic reduction of tumor-infiltrating myeloid cells (TIM) was observed. In this model, we could not detect a direct effect of TIMs or pro-survival cytokines produced by TIMs that could confer resistance to PLX4032 (vemurafenib). However, the macrophage inhibitory effects of PLX3397 treatment in combination with the paradoxical activation of wild type BRAF-expressing immune cells mediated by PLX4032 resulted in more tumor-infiltrating lymphocytes (TIL). Depletion of CD8+ T-cells abrogated the antitumor response to the combination therapy. Furthermore, TILs isolated from SM1 tumors treated with PLX3397 and PLX4032 displayed higher immune potentiating activity. CONCLUSIONS: The combination of BRAF-targeted therapy with CSF-1R blockade resulted in increased CD8 T-cell responses in the SM1 melanoma model, supporting the ongoing evaluation of this therapeutic combination in patients with BRAF (V600) mutant metastatic melanoma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Melanoma, Experimental/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Aminopyridines/administration & dosage , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Synergism , Indoles/administration & dosage , Lymphocyte Activation , Macrophages/drug effects , Macrophages/immunology , Melanoma, Experimental/immunology , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Pyrroles/administration & dosage , Sulfonamides/administration & dosage , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Vemurafenib
14.
Cancer Rep (Hoboken) ; 7(2): e1932, 2024 02.
Article in English | MEDLINE | ID: mdl-38189893

ABSTRACT

BACKGROUND: Immuno-oncology therapy (IO) is associated with a variety of treatment-related toxicities. However, the impact of toxicity on the treatment discontinuation rate between males and females is unknown. We hypothesized that immune-related adverse events would lead to more frequent treatment changes in females since autoimmune diseases occur more frequently in females. AIMS: Our aim was to determine if there was a difference in the rate of immunotherapy treatment change due to toxicity between males and females. METHODS AND RESULTS: The Oncology Research Information Exchange Network Avatar Database collected clinical data from 10 United States cancer centers. Of 1035 patients receiving IO, 447 were analyzed, excluding those who did not have documentation noting if a patient changed treatment (n = 573). Fifteen patients with unknown or gender-specific cancer were excluded. All cancer types and stages were included. The primary endpoint was documented treatment change due to toxicity. Four hundred and forty-seven patients (281 males and 166 females) received IO treatment. The most common cancers treated were kidney, skin, and lung for 99, 84, and 54 patients, respectively. Females had a shorter IO course than males (median 3.7 vs. 5.1 months, respectively, p = .02). Fifty-four patients changed treatment due to toxicity. There was no significant difference between females and males on chi-square test (11.4% vs. 12.5%, respectively, p = 0.75) and multivariable logistic regression (OR 0.924, 95% CI 0.453-1.885, p = .827). Significantly more patients with chronic obstructive pulmonary disease (COPD) changed therapy due to toxicity (OR 2.491, 95% CI 1.025-6.054, p = .044). CONCLUSION: Females received a shorter course of IO than males. However, there was no significant difference in the treatment discontinuation rate due to toxicity between males and females receiving IO. Toxicity-related treatment change was associated with COPD.


Subject(s)
Neoplasms , Pulmonary Disease, Chronic Obstructive , Male , Female , Humans , United States , Neoplasms/therapy , Immunotherapy/adverse effects , Immunotherapy/methods , Medical Oncology , Pulmonary Disease, Chronic Obstructive/etiology
15.
J Immunother Cancer ; 12(1)2024 01 17.
Article in English | MEDLINE | ID: mdl-38233101

ABSTRACT

BACKGROUND: Immune-related adverse events (irAEs) are major barriers of clinical management and further development of immune checkpoint inhibitors (ICIs) for cancer therapy. Therefore, biomarkers associated with the onset of severe irAEs are needed. In this study, we aimed to identify immune features detectable in peripheral blood and associated with the development of severe irAEs that required clinical intervention. METHODS: We used a 43-marker mass cytometry panel to characterize peripheral blood mononuclear cells from 28 unique patients with melanoma across 29 lines of ICI therapy before treatment (baseline), before the onset of irAEs (pre-irAE) and at the peak of irAEs (irAE-max). In the 29 lines of ICI therapy, 18 resulted in severe irAEs and 11 did not. RESULTS: Unsupervised and gated population analysis showed that patients with severe irAEs had a higher frequency of CD4+ naïve T cells and lower frequency of CD16+ natural killer (NK) cells at all time points. Gated population analysis additionally showed that patients with severe irAEs had fewer T cell immunoreceptor with Ig and ITIM domain (TIGIT+) regulatory T cells at baseline and more activated CD38+ CD4+ central memory T cells (TCM) and CD39+ and Human Leukocyte Antigen-DR Isotype (HLA-DR)+ CD8+ TCM at peak of irAEs. The differentiating immune features at baseline were predominantly seen in patients with gastrointestinal and cutaneous irAEs and type 1 diabetes. Higher frequencies of CD4+ naïve T cells and lower frequencies of CD16+ NK cells were also associated with clinical benefit to ICI therapy. CONCLUSIONS: This study demonstrates that high-dimensional immune profiling can reveal novel blood-based immune signatures associated with risk and mechanism of severe irAEs. Development of severe irAEs in melanoma could be the result of reduced immune inhibitory capacity pre-ICI treatment, resulting in more activated TCM cells after treatment.


Subject(s)
Melanoma , T-Lymphocytes, Regulatory , Humans , Immune Checkpoint Inhibitors/adverse effects , Leukocytes, Mononuclear , Melanoma/drug therapy , Killer Cells, Natural
16.
Am Soc Clin Oncol Educ Book ; 43: e390290, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37459578

ABSTRACT

What does the future of cancer immunotherapy look like and how do we get there? Find out where we've been and where we're headed in A Report on Resistance: The Road to personalized immunotherapy.

17.
Front Immunol ; 14: 1229823, 2023.
Article in English | MEDLINE | ID: mdl-37671166

ABSTRACT

Background: Type 1 diabetes mellitus (T1DM) is a rare, but serious immune-related adverse event (irAE) of immune checkpoint inhibitors (ICIs). Our goal was to characterize treatment outcomes associated with ICI-induced T1DM through analysis of clinical, immunological and proteomic data. Methods: This was a single-center case series of patients with solid tumors who received ICIs and subsequently had a new diagnosis of T1DM. ICD codes and C-peptide levels were used to identify patients for chart review to confirm ICI-induced T1DM. Baseline blood specimens were studied for proteomic and immunophenotypic changes. Results: Between 2011 and 2023, 18 of 3744 patients treated at Huntsman Cancer Institute with ICIs were confirmed to have ICI-induced T1DM (0.48%). Eleven of the 18 patients received anti-PD1 monotherapy, 4 received anti-PD1 plus chemotherapy or targeted therapy, and 3 received ipilimumab plus nivolumab. The mean time to onset was 218 days (range 22-418 days). Patients had sudden elevated serum glucose within 2-3 weeks prior to diagnosis. Sixteen (89%) presented with diabetic ketoacidosis. Three of 12 patients had positive T1DM-associated autoantibodies. All patients with T1DM became insulin-dependent through follow-up. At median follow-up of 21.9 months (range 8.4-82.4), no patients in the melanoma group had progressed or died from disease. In the melanoma group, best responses were 2 complete response and 2 partial response while on active treatment; none in the adjuvant group had disease recurrence. Proteomic analysis of baseline blood suggested low inflammatory (IL-6, OSMR) markers and high metabolic (GLO1, DXCR) markers in ICI-induced T1DM cohort. Conclusions: Our case series demonstrates rapid onset and irreversibility of ICI-induced T1DM. Melanoma patients with ICI-induced T1DM display excellent clinical response and survival. Limited proteomic data also suggested a unique proteomic profile. Our study helps clinicians to understand the unique clinical presentation and long-term outcomes of this rare irAE for best clinical management.


Subject(s)
Diabetes Mellitus, Type 1 , Melanoma , Humans , Immune Checkpoint Inhibitors , Blood Glucose , Proteomics , Neoplasm Recurrence, Local
18.
Res Sq ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398360

ABSTRACT

Background: Despite advancements in checkpoint inhibitor-based immunotherapy, patients with advanced melanoma who have progressed on standard dose ipilimumab (Ipi) + nivolumab continue to have poor prognosis. Several studies support a dose-response activity of Ipi, and one promising combination is Ipi 10mg/kg (Ipi10) + temozolomide (TMZ). Methods: We performed a retrospective cohort analysis of patients with advanced melanoma treated with Ipi10+TMZ in the immunotherapy refractory/resistant setting (n = 6), using similar patients treated with Ipi3+TMZ (n = 6) as comparison. Molecular profiling by whole exome sequencing (WES) and RNA-seq of tumors harvested through one responder's treatment was performed. Results: With a median follow up of 119 days, patients treated with Ipi10+TMZ had statistically significant longer median progression free survival of 144.5 days (range 27-219) vs 44 (26-75) in Ipi3+TMZ, p=0.04, and a trend for longer median overall survival of 154.5 days (27-537) vs 89.5 (26-548). All patients in the Ipi10 cohort had progressed on prior Ipi+Nivo. WES revealed only 12 shared somatic mutations including BRAF V600E. RNA-seq showed enrichment of inflammatory signatures, including interferon responses in metastatic lesions after standard dose Ipi + nivo and Ipi10 + TMZ compared to the primary tumor, and downregulated negative immune regulators including Wnt and TGFb signaling. Conclusion: Ipi10+TMZ demonstrated efficacy including dramatic responses in patients with advanced melanoma refractory to prior Ipi + anti-PD1, even with CNS metastases. Molecular data suggest a potential threshold of Ipi dose for activation of sufficient anti-tumor immune response, and higher dose Ipi is required for some patients.

19.
Clin Cancer Res ; 29(5): 888-898, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36342102

ABSTRACT

PURPOSE: This phase 1 study (NCT03440437) evaluated the safety, tolerability, pharmacokinetics (PK), and activity of FS118, a bispecific antibody-targeting LAG-3 and PD-L1, in patients with advanced cancer resistant to anti-PD-(L)1 therapy. PATIENTS AND METHODS: Patients with solid tumors, refractory to anti-PD-(L)1-based therapy, received intravenous FS118 weekly with an accelerated dose titration design (800 µg to 0.3 mg/kg) followed by 3+3 ascending dose expansion (1 to 20 mg/kg). Primary objectives were safety, tolerability, and PK. Additional endpoints included antitumor activity, immunogenicity, and pharmacodynamics. RESULTS: Forty-three patients with a median of three prior regimens in the locally advanced/metastatic setting, including at least one anti-PD-(L)1 regimen, received FS118 monotherapy. FS118 was well tolerated, with no serious adverse events relating to FS118 reported. No dose-limiting toxicities (DLT) were observed, and an MTD was not reached. The recommended phase 2 dose of FS118 was established as 10 mg/kg weekly. The terminal half-life was 3.9 days. Immunogenicity was transient. Pharmacodynamic activity was prolonged throughout dosing as demonstrated by sustained elevation of soluble LAG-3 and increased peripheral effector cells. The overall disease control rate (DCR) was 46.5%; this disease control was observed as stable disease, except for one late partial response. Disease control of 54.8% was observed in patients receiving 1 mg/kg or greater who had acquired resistance to PD-(L)1-targeted therapy. CONCLUSIONS: FS118 was well tolerated with no DLTs observed up to and including 20 mg/kg QW. Further studies are warranted to determine clinical benefit in patients who have become refractory to anti-PD-(L)1 therapy. See related commentary by Karapetyan and Luke, p. 835.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Neoplasms , Humans , Interferons , B7-H1 Antigen , Neoplasms/pathology , Antineoplastic Agents/adverse effects , Antibodies, Bispecific/adverse effects , Immunotherapy , Biology
20.
Clin Cancer Res ; 29(23): 4728-4732, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37531248

ABSTRACT

Basket, umbrella, and platform trial designs (master protocols) have emerged over the last decade to study precision medicine approaches in oncology. First-generation trials like NCI-MATCH (Molecular Analysis for Therapy Choice) have proven the principle that studying targeted therapies on a large scale is feasible both from the laboratory and clinical perspectives. However, single-agent targeted therapies have shown limited ability to control metastatic disease, despite careful matching of drug to target. As such, newer approaches employing combinations of targeted therapy, or targeted therapy with standard therapies, need to be considered. The NCI has recently embarked on three second-generation precision medicine trials to address this need: ComboMATCH, iMATCH, and myeloMATCH. The design of these trials and necessary infrastructure are discussed in the following perspective.


Subject(s)
Neoplasms, Second Primary , Neoplasms , Humans , Precision Medicine/methods , Neoplasms/drug therapy , Neoplasms/genetics , Medical Oncology/methods
SELECTION OF CITATIONS
SEARCH DETAIL