Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Med Sci ; 19(5): 893-900, 2022.
Article in English | MEDLINE | ID: mdl-35693737

ABSTRACT

Purpose: The alteration of the exosomal proteins in the aqueous humor (AH) is linked to the development of eye diseases. The goal of this study was to examine the exosomal protein profile of patients with age-related macular degeneration (AMD) to better understand their role in the pathogenesis of AMD. Methods: Exosomes were isolated from the AH of 28 AMD and 25 control eyes. The quality, concentration, and size distribution of exosomes were measured using a nanoparticle tracking analysis system (NTA). Total exosomal proteins from each sample were purified and digested with trypsin for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: Based on LC-MS/MS analysis, we got 105 exosomal peptides from AMD and control patients. Gene ontology (GO) analysis in the biology process revealed that exosomal proteins of AMD were enriched in the lipoprotein metabolic process. T-test analysis revealed six exosomal proteins in patients with AMD were significantly different from controls. Comparing the exosomal protein profile of AMD patients who were receiving anti-VEGF therapy, we observed the amount of two proteins decreased with the duration of the anti-VEGF treatment time. Conclusions: In this study, we successfully isolated and purified AH exosomes. Our results provide pioneering findings for the exosomal protein profile in AMD development and under therapy. These unique proteins could be the new targets for drug discovery or biological markers for evaluating therapeutic efficacy.


Subject(s)
Exosomes , Macular Degeneration , Aqueous Humor/metabolism , Chromatography, Liquid , Exosomes/metabolism , Humans , Macular Degeneration/drug therapy , Macular Degeneration/genetics , Macular Degeneration/metabolism , Proteomics , Tandem Mass Spectrometry
2.
Int J Med Sci ; 18(9): 2023-2029, 2021.
Article in English | MEDLINE | ID: mdl-33850473

ABSTRACT

Objectives: Myopia is the most common refractive vision disorder. In recent years, several studies have suggested that the alteration of the exosomal protein levels in the aqueous humor (AH) is associated with the development of several eye diseases. Therefore, we aimed to explore the exosomal protein profile of the AH from myopia patients. Methods: Exosomes were isolated from the AH. The quality, concentration, and size distribution of exosomes for each patient were measured using nanoparticle tracking analysis system. Then, the exosomal proteins were purified and digested by trypsin for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: There was no significant difference observed between the myopia and control when comparing the concentration and size distribution of exosomes in the AH for each sample. Based on LC-MS/MS analysis, myopia patients had higher and more complex exosomal peptide content. We found two proteins that were common in AH exosomes and eight proteins that were highly expressed in the myopia group. Conclusions: Our results provide pioneering findings for the exploration of the exosomal protein profile in myopia development. Further studies may provide significant information for the diagnosis, clinical treatment, and prognosis of myopia.


Subject(s)
Aqueous Humor/metabolism , Exosomes/metabolism , Eye Proteins/analysis , Myopia/pathology , Aged , Aged, 80 and over , Aqueous Humor/cytology , Case-Control Studies , Cataract/complications , Cataract Extraction , Chromatography, High Pressure Liquid , Eye Proteins/metabolism , Female , Humans , Male , Middle Aged , Myopia/complications , Myopia/diagnosis , Proteomics , Tandem Mass Spectrometry
3.
Tohoku J Exp Med ; 249(3): 213-221, 2019 11.
Article in English | MEDLINE | ID: mdl-31776299

ABSTRACT

Myopia is the most common refractive disorder in Eastern Asia. The development of myopia is associated with the cooperation of various ocular tissues. Exosomes in the aqueous humor (AH) have been implicated to modulate intracellular communications by transferring exosomal miRNAs and proteins between cells. These exosomal miRNAs and proteins are likely involved in the pathogenesis of various eye diseases. In this study, we aimed to explore human exosomal miRNA profiles and their roles in myopia development. AH samples were collected from 16 patients (8 myopia and 8 control) undergoing routine cataract surgeries. Exosomes were isolated from AH of each individual using the ExoQuick solution. The numbers and sizes of exosomes were not significantly different between the myopia and control groups. The individual exosomes of the same group were pooled to purify RNA. Unexpectedly, the myopia group contained 2.78-fold total RNA amount than that in the control group. Thereafter, miRNA profiles were analyzed using the OpenArray system. We thus found 15 myopia-specific miRNAs and four myopia-absent miRNAs. By using bioinformatics analysis, we identified six well-known myopia-associated genes that are potential targets of five myopia-specific miRNAs (has-miR-582-3p, has-miR-17-5p, has-miR-885-3p, has-miR-19b-3p, and has-miR-450b-5p). These genes are cholinergic receptor muscarinic 2 (CHRM2), cyclic nucleotide-gated channel beta 3 (CNGB3), vascular endothelial growth factor A (VEGFA), adenosine A2a receptor (ADORA2A), insulin-like growth factor 1 (IGF1), and lumican (LUM). Moreover, CHRM2 may be a target of myopia-absent miRNA (has-miR-378a-5p). In conclusion, we show the expression profiles of AH-derived exosomal miRNAs and their potential roles in myopia development.


Subject(s)
Aqueous Humor/metabolism , Exosomes/genetics , Gene Expression Profiling , MicroRNAs/genetics , Myopia/genetics , Aged , Base Sequence , Case-Control Studies , Female , Gene Expression Regulation , Humans , Male , MicroRNAs/metabolism , Middle Aged
4.
BMC Genet ; 19(1): 55, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30089464

ABSTRACT

BACKGROUND: Aging leads to decreased skeletal muscle function in mammals and is associated with a progressive loss of muscle mass, quality and strength. Age-related muscle loss (sarcopenia) is an important health problem associated with the aged population. RESULTS: We investigated the alteration of genome-wide transcription in mouse skeletal muscle tissue (rectus femoris muscle) during aging using a high-throughput sequencing technique. Analysis revealed significant transcriptional changes between skeletal muscles of mice at 3 (young group) and 24 (old group) months of age. Specifically, genes associated with energy metabolism, cell proliferation, muscle myosin isoforms, as well as immune functions were found to be altered. We observed several interesting gene expression changes in the elderly, many of which have not been reported before. CONCLUSIONS: Those data expand our understanding of the various compensatory mechanisms that can occur with age, and further will assist in the development of methods to prevent and attenuate adverse outcomes of aging.


Subject(s)
Gene Expression Regulation , Muscle, Skeletal/metabolism , Sarcopenia/genetics , Animals , Cell Proliferation , Energy Metabolism , Gene Expression Profiling , Male , Mice , Muscle, Skeletal/physiology , Sarcopenia/metabolism , Sarcopenia/physiopathology , Sequence Analysis, RNA
5.
FEBS Open Bio ; 14(4): 687-694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403291

ABSTRACT

FNDC3B (fibronectin type III domain containing 3B) is highly expressed in hepatocellular carcinoma (HCC) and other cancer types, and fusion genes involving FNDC3B have been identified in HCC and leukemia. Growing evidence suggests the significance of FNDC3B in tumorigenesis, particularly in cell migration and tumor metastasis. However, its regulatory mechanisms remain elusive. In this study, we employed bioinformatic, gene regulation, and protein-DNA interaction screening to investigate the transcription factors (TFs) involved in regulating FNDC3B. Initially, 338 candidate TFs were selected based on previous chromatin immunoprecipitation (ChIP)-seq experiments available in public domain databases. Through TF knockdown screening and ChIP coupled with Droplet Digital PCR assays, we identified that E2F1 (E2F transcription factor 1) is crucial for the activation of FNDC3B. Overexpression or knockdown of E2F1 significantly impacts the expression of FNDC3B. In conclusion, our study elucidated the mechanistic link between FNDC3B and E2F1. These findings contribute to a better understanding of FNDC3B in tumorigenesis and provide insights into potential therapeutic targets for cancer treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Chromatin Immunoprecipitation , Cell Transformation, Neoplastic , Cell Movement/genetics , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Fibronectins/metabolism
6.
J Ethnopharmacol ; 317: 116834, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37355084

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kuan-Sin-Yin (KSY) is a traditional Chinese medical decoction, designed based on the classic Si-Jun-Zi-Tang decoction and used clinically to improve the synergic effects of energy promotion, liver function and cancer related symptom and quality of life. However, the anti-hepatocellular carcinoma (HCC) function of KSY is unclear. AIM OF THE STUDY: This study aimed to investigate the anti-mobility activity of KSY on HCC cells and elucidate its molecular mechanism. MATERIALS AND METHODS: Two malignancy hepatocellular carcinoma cells, Mahlavu and SK-Hep-1, were used for the test of cell proliferation via alarm blue assay. The wound healing and Transwell assays were used to determine the anti-mobility activity of KSY in HCC cells. Cell morphology was analyzed via confocal microscopy. The genomic profile of KSY-treated HCC cells was analyzed by microarray. The potential signaling pathways and bio-functions of KSY-mediated genes were analyzed by ingenuity pathway analysis (IPA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) level of indicated gene. RESULTS: KSY did not affect cell viability of HCC cells but significantly inhibited cell migration and invasion in those HCC Mahlavu and SK-Hep-1 cells. In parallel, KSY induced changes in morphology of HCC cells via re-modulating actin cytoskeleton. KSY upregulated 1270 genes but reduced 1534 genes in Mahlavu cells. KSY regulated various gene networks which controlled cell migration, invasion and movement. Specifically, KSY reduced expression of chemokine (C-C motif) ligand 2 (CCL2), which is correlated to cell mobility, and concomitantly downregulated mRNA levels of phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) and CEA cell adhesion molecule 1 (CEACAM1). CONCLUSION: These findings indicated that regulation of CCL2-mediated PIK3R3 and CEACAM1 may be involved in KSY inhibited cell mobility. Moreover, KSY may be a potential a Chinese decoction for reducing cell mobility.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Medicine, Chinese Traditional , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Down-Regulation , Quality of Life , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Chemokine CCL2/metabolism , Phosphatidylinositol 3-Kinases/metabolism
7.
Am J Cancer Res ; 13(10): 4560-4578, 2023.
Article in English | MEDLINE | ID: mdl-37970364

ABSTRACT

The high heterogeneity and low percentage of neuroendocrine cells in prostate cancer limit the utility of traditional bulk RNA sequencing and even single-cell RNA sequencing to find better biomarkers for early diagnosis and stratification. Re-clustering of specific cell-type holds great promise for identification of intra-cell-type heterogeneity. However, this has not yet been used in studying neuroendocrine prostate cancer heterogeneity. Neuroendocrine cluster(s) were individually identified in each castration-resistant prostate cancer specimen and combined for trajectory analysis. Three neuroendocrine states were identified. Neuroendocrine state 2 with the highest AR score was considered the initial starting state of neuroendocrine transdifferentiation. State 1 and state 3 with distinct high neuroendocrine scores and marker genes enriched in N-Myc and REST target genes, respectively, were considered as two different types of neuroendocrine differentiated cancer cells. These two states contained distinct groups of prostate cancer biomarkers and a strong distinguishing ability of normal versus cancerous prostate across different pathological grading was found in the N-Myc-associated state. Our data highlight the central role of N-Myc and REST in mediating lineage plasticity and classifying neuroendocrine phenotypes.

8.
Nat Commun ; 13(1): 4174, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854007

ABSTRACT

Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist.


Subject(s)
Adipogenesis , Lipid Droplets , Adipogenesis/genetics , Animals , CD36 Antigens/genetics , CD36 Antigens/metabolism , Diet, High-Fat , Fatty Acids/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , MAP Kinase Signaling System , Mice , Obesity/genetics , Obesity/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism
9.
Oncol Lett ; 16(2): 2319-2325, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30008935

ABSTRACT

Previous studies have indicated that certain microRNAs (miRNAs/miRs) function as either tumor suppressors or oncogenes in human cancer. The present study identified the miR-23a/27a/24-2 cluster, containing miR-23, miR-27a and miR-24, as an oncogene in gastric cancer. The expression of the miR-23a/27a/24-2 cluster was upregulated in clinical gastric cancer tissues. Transfection with inhibitors of miR-23a, miR-27a, or miR-24, either independently or together, repressed in vitro colony formation and in vivo tumor formation. The miR23a/27a/24-2 cluster inhibitors repressed the growth of gastric cancer cells in a synergistic manner. In addition, treatment with lower doses of the miRNA inhibitor mixture induced the formation of apoptotic bodies. According to computational predictions using TargetScan, suppressor of cytokine-induced signaling 6 (SOCS6) was identified as one of the downstream target genes of the miR-23a/27a/24-2 cluster. The expression of SOCS6 was significantly lower in tumor tissues than in matched normal tissues (P<0.01) and was associated with poor survival (P<0.00001). Taken together, these results strongly suggested that the miR-23a/27a/24-2 cluster may mediate the progression of gastric cancer through the suppression of SOCS6 expression. The present study also provides a novel molecular target for the development of an anti-gastric cancer agent.

10.
Oncol Rep ; 37(4): 2101-2108, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28350097

ABSTRACT

Gene fusion due to rearrangement or translocation of chromosomes is a powerful mutational mechanism during tumorigenesis. Several new high-resolution technologies have recently been developed to evaluate large numbers of small aberrations as candidate loci for fusion gene screening. In our previous whole-genome screening study using 500K SNP arrays, we identified more than 700 homozygous deletions (HDs) and amplicons in 23 cancer cell lines. To explore novel fusion genes in cancer, we established stringent criteria for defining HD and amplicon breakpoints. Then genomic PCR and sequencing analyses identified a fusion gene, FNDC3B-PRKCI, that resulted from chromosome intra-rearrangement. Western blotting and 3'-RACE analyses revealed that the chimeric transcript was an in-frame fusion between FNDC3B and PRKCI. Finally, cell migration and colony formation assays suggested that FNDC3B-PRKCI is a potential oncogene.


Subject(s)
Chromosome Breakpoints , Genome-Wide Association Study/methods , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Fibronectins/genetics , Hep G2 Cells , Humans , Isoenzymes/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Protein Kinase C/genetics , Sequence Deletion , Translocation, Genetic
11.
Oncol Rep ; 34(1): 439-46, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25954999

ABSTRACT

Krüppel-like factor 4 (KLF4) plays important roles in development, stemness and tumorigenesis; however limited information is available on the detailed function of KLF4 in hepatocellular carcinoma (HCC). The objective of the present study was to examine the functional roles of KLF4 in the metastasis of HCC cells. KLF4 was overexpressed and knocked down by lentiviral transduction method in highly metastatic HCC cells. KLF4 overexpression in HCC cells led to inhibition of cell migration and invasion. These inhibitory effects were associated with the upregulation of tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 by KLF4. Treatment with recombinant TIMP-1 decreased the migratory ability of HCC cells. Moreover, myeloperoxidase (MPO)-TIMP-1/TIMP-2 inactivator counteracted the KLF4-induced inhibition of cell migration/invasion. Consistently, KLF4 knockdown in HCC cells downregulated TIMP-1 and TIMP-2 expression, consequently promoting cell migration and invasion. Furthermore, we found that KLF4 regulated E-cadherin and epithelial-mesenchymal transition (EMT)-related proteins such as snail, vimentin and Bmi1 to modulate the cell migration ability. These results together demonstrated for the first time that KLF4 plays an important role in inhibiting the aggressiveness of HCC cells via upregulation of TIMP-1 and TIMP-2.


Subject(s)
Carcinoma, Hepatocellular/pathology , Kruppel-Like Transcription Factors/metabolism , Liver Neoplasms/pathology , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , HEK293 Cells , Hep G2 Cells , Humans , Kruppel-Like Factor 4 , Liver Neoplasms/metabolism , Neoplasm Invasiveness , Up-Regulation
12.
Cancers (Basel) ; 3(2): 1996-2013, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-24212793

ABSTRACT

We have previously identified large megabase-sized hypomethylated zones in the genome of the breast cancer cell line MCF-7 using the TspRI-ExoIII technique. In this report, we used a more convenient high throughput method for mapping the hypomethylated zones in a number of human tumor genomes simultaneously. The method was validated by the bisulfite sequencing of 39 randomly chosen sites in a demethylated domain and by bisulfite genome-wide sequencing of the MCF-7 genome. This showed that the genomes of the various tumor cell lines, as well as some primary tumors, exhibit common hypomethylated domains. Interestingly, these hypomethylated domains are correlated with low CpG density distribution genome-wide, together with the histone H3K27Me3 landscape. Furthermore, they are inversely correlated with the H3K9Ac landscape and gene expression as measured in MCF-7 cells. Treatment with drugs resulted in en-bloc changes to the methylation domains. A close examination of the methylation domains found differences between non-invasive and invasive tumors with respect to tumorigenesis related genes. Taken together these results suggest that the human genome is organized in epigenomic domains that contain various different types of genes and imply that there are cis- and trans-regulators that control these domain-wide epigenetic changes and hence gene expression in the human genome. The hypomethylated domains are located in gene deserts that contain mainly tissue-specific genes and therefore we hypothesize that tumor cells keep these regions demethylated and silenced in order to save energy and resources and allow higher levels of cell proliferation and better survival (a thrifty tumor genome hypothesis).

SELECTION OF CITATIONS
SEARCH DETAIL