Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 686
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 80(2): 263-278.e7, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33022274

ABSTRACT

Cancer metastasis accounts for the major cause of cancer-related deaths. How disseminated cancer cells cope with hostile microenvironments in secondary site for full-blown metastasis is largely unknown. Here, we show that AMPK (AMP-activated protein kinase), activated in mouse metastasis models, drives pyruvate dehydrogenase complex (PDHc) activation to maintain TCA cycle (tricarboxylic acid cycle) and promotes cancer metastasis by adapting cancer cells to metabolic and oxidative stresses. This AMPK-PDHc axis is activated in advanced breast cancer and predicts poor metastasis-free survival. Mechanistically, AMPK localizes in the mitochondrial matrix and phosphorylates the catalytic alpha subunit of PDHc (PDHA) on two residues S295 and S314, which activates the enzymatic activity of PDHc and alleviates an inhibitory phosphorylation by PDHKs, respectively. Importantly, these phosphorylation events mediate PDHc function in cancer metastasis. Our study reveals that AMPK-mediated PDHA phosphorylation drives PDHc activation and TCA cycle to empower cancer cells adaptation to metastatic microenvironments for metastasis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Citric Acid Cycle , Pyruvate Dehydrogenase Complex/metabolism , Animals , Catalytic Domain , Cell Line, Tumor , Cell Survival , Enzyme Activation , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Phosphorylation , Phosphoserine/metabolism , Signal Transduction , Stress, Physiological , Survival Analysis
2.
Small ; 20(15): e2307284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37994259

ABSTRACT

High-entropy oxides (HEOs) are promising anode materials for lithium-ion batteries (LIBs), owing to their stable crystal structure, superionic conductivity, and high capacity. In this study, the (Cr, Mn, Fe, Co, and Ni)3O4 HEO via solid-state reaction is prepared. To improve the synthetic efficiency, it is necessary to understand the formation mechanism. Therefore, a high-resolution transmission electron microscopy (HRTEM) is used to record information during calcination at increasing temperature. The overall formation process included MnO2 and NiO aggregation at 500 °C, followed by (Mn, and Ni)3O4 combined with Co3O4 at 600 °C to form (Mn, Co, and Ni)3O4. At higher temperatures, Fe2O3 and Cr2O3 sequentially combined with (Mn, Co, and Ni)3O4 and formed the (Cr, Mn, Fe, Co, Ni)3O4 at 900 °C. In addition, the valence-state-changing mechanisms and ion arrangements of (Cr, Mn, Fe, Co, and Ni)3O4 are determined using electron energy loss spectroscopy (EELS) and extended X-ray absorption fine structure (EXAFS). This study successfully revealed the formation of HEO at atomic scale. The results provide valuable insights for improving the manufacturing process of (Cr, Mn, Fe, Co, and Ni)3O4 HEOs, which is expected to play a vital role in the development of anode materials for next-generation LIBs.

3.
Article in English | MEDLINE | ID: mdl-38837810

ABSTRACT

The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.

4.
Mol Cell ; 64(4): 803-814, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27818144

ABSTRACT

Mitochondrial p53 is involved in apoptosis and tumor suppression. However, its regulation is not well studied. Here, we show that TRAF6 E3 ligase is a crucial factor to restrict mitochondrial translocation of p53 and spontaneous apoptosis by promoting K63-linked ubiquitination of p53 at K24 in cytosol, and such ubiquitination limits the interaction between p53 and MCL-1/BAK. Genotoxic stress reduces this ubiquitination in cytosol by S13/T330 phosphorylation-dependent translocation of TRAF6 from cytosol to nucleus, where TRAF6 also facilitates the K63-linked ubiquitination of nuclear p53 and its transactivation by recruiting p300 for p53 acetylation. Functionally, K63-linked ubiquitination of p53 compromised p53-mediated apoptosis and tumor suppression. Colorectal cancer samples with WT p53 reveal that TRAF6 overexpression negatively correlates with apoptosis and predicts poor response to chemotherapy and radiotherapy. Together, our study identifies TRAF6 as a critical gatekeeper to restrict p53 mitochondrial translocation, and such mechanism may contribute to tumor development and drug resistance.


Subject(s)
Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Mitochondria/metabolism , TNF Receptor-Associated Factor 6/genetics , Tumor Suppressor Protein p53/genetics , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Cytosol/drug effects , Cytosol/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Lysine/metabolism , Mice , Mitochondria/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Transplantation , Protein Transport , Signal Transduction , Sulfonamides/pharmacology , Survival Analysis , TNF Receptor-Associated Factor 6/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Ubiquitination , Xenograft Model Antitumor Assays , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
5.
Int J Med Sci ; 21(8): 1491-1499, 2024.
Article in English | MEDLINE | ID: mdl-38903928

ABSTRACT

Age-related structural and functional changes in the kidney can eventually lead to development of chronic kidney disease, which is one of the leading causes of mortality among elderly people. For effective management of age-related kidney complications, it is important to identify new therapeutic interventions with minimal side-effects. The present study was designed to evaluate the synergistic effect of a traditional Chinese herb, Alpinate Oxyphyllae Fructus (AOF), and adipose-derived mesenchymal stem cells (ADMSCs) in ameliorating D-galactose (D-gal)-induced renal aging phenotypes in WKY rats. The study findings showed that D-gal-induced alteration in the kidney morphology was partly recovered by the AOF and ADMSC co-treatment. Moreover, the AOF and ADMSC co-treatment reduced the expression of proinflammatory mediators (NFkB, IL-6, and Cox2) and increased the expression of redox regulators (Nrf2 and HO-1) in the kidney, which were otherwise augmented by the D-gal treatment. Regarding kidney cell death, the AOF and ADMSC co-treatment was found to abolish the proapoptotic effects of D-gal by downregulating Bax and Bad expressions and inhibiting caspase 3 activation. Taken together, the study findings indicate that the AOF and ADMSC co-treatment protect the kidney from D-gal-induced aging by reducing cellular inflammation and oxidative stress and inhibiting renal cell death. This study can open up a new path toward developing novel therapeutic interventions using both AOF and ADMSC to effectively manage age-related renal deterioration.


Subject(s)
Drugs, Chinese Herbal , Galactose , Kidney , Mesenchymal Stem Cells , Animals , Galactose/adverse effects , Rats , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Kidney/drug effects , Kidney/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Oxidative Stress/drug effects , Male , Apoptosis/drug effects , Mesenchymal Stem Cell Transplantation/methods , Humans , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/drug therapy
6.
Environ Toxicol ; 39(2): 965-978, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37987213

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting approximately 1% of the global population, with a higher prevalence in women than in men. Chronic inflammation and oxidative stress play pivotal roles in the pathogenesis of RA. Anethole, a prominent compound derived from fennel (Foeniculum vulgare), possesses a spectrum of therapeutic properties, including anti-arthritic, anti-inflammatory, antioxidant, and tumor-suppressive effects. However, its specific impact on RA remains underexplored. This study sought to uncover the potential therapeutic value of anethole in treating RA by employing an H2 O2 -induced inflammation model with HIG-82 synovial cells. Our results demonstrated that exposure to H2 O2 induced the inflammation and apoptosis in these cells. Remarkably, anethole treatment effectively countered these inflammatory and apoptotic processes triggered by H2 O2 . Moreover, we identified the aquaporin 1 (AQP1) and protein kinase A (PKA) pathway as critical regulators of inflammation and apoptosis. H2 O2 stimulation led to an increase in the AQP1 expression and a decrease in p-PKA-C, contributing to cartilage degradation. Conversely, anethole not only downregulated the AQP1 expression but also activated the PKA pathway, effectively suppressing cell inflammation and apoptosis. Furthermore, anethole also inhibited the enzymes responsible for cartilage degradation. In summary, our findings highlight the potential of anethole as a therapeutic agent for mitigating H2 O2 -induced inflammation and apoptosis in synovial cells, offering promising prospects for future RA treatments.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Male , Humans , Female , Synoviocytes/metabolism , Aquaporin 1 , Cyclic AMP-Dependent Protein Kinases/metabolism , Inflammation/pathology , Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Cells, Cultured , Cell Proliferation
7.
Environ Toxicol ; 39(7): 3872-3882, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558324

ABSTRACT

Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 µM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.


Subject(s)
Cellular Senescence , Doxorubicin , Mitochondria , Plant Extracts , Reactive Oxygen Species , Umbilical Cord , Humans , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Umbilical Cord/cytology , Umbilical Cord/drug effects , Plant Extracts/pharmacology , Doxorubicin/toxicity , Doxorubicin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects , Platycodon/chemistry , Mesenchymal Stem Cells/drug effects , Cells, Cultured
8.
Environ Toxicol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109685

ABSTRACT

Oxidative stress is a pivotal factor in the pathogenesis of various cardiovascular diseases. Rhodiola, a traditional Chinese medicine, is recognized for its potent antioxidant properties. Salidroside, a phenylpropanoid glycoside derived from Rhodiola rosea, has shown remarkable antioxidant capabilities. This study aimed to elucidate the potential protective mechanisms of Rhodiola and salidroside against H2O2-induced cardiac apoptosis in H9c2 cardiomyoblast cells. H9c2 cells were exposed to H2O2 for 4 h, and subsequently treated with Rhodiola or salidroside for 24 h. Cell viability and apoptotic pathways were assessed. The involvement of insulin-like growth factor 1 receptor (IGF1R) and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) were investigated. H2O2 (100 µM) exposure significantly induced cardiac apoptosis in H9c2 cells. However, treatment with Rhodiola (12.5, 25, and 50 µg/mL) and salidroside (0.1, 1, and 10 nM) effectively attenuated H2O2-induced cytotoxicity and apoptosis. This protective effect was associated with IGF1R-activated phosphorylation of ERK1/2, leading to the inhibition of Fas-dependent proteins, HIF-1α, Bax, and Bak expression in H9c2 cells. The images from hematoxylin and eosin staining and immunofluorescence assays also revealed the protective effects of Rhodiola and salidroside in H9c2 cells against oxidative damage. Our findings suggest that Rhodiola and salidroside possess antioxidative properties that mitigate H2O2-induced apoptosis in H9c2 cells. The protective mechanisms involve the activation of IGF1R and subsequent phosphorylation of ERK1/2. These results propose Rhodiola and salidroside as potential therapeutic agents for cardiomyocyte cytotoxicity and apoptosis induced by oxidative stress in heart diseases. Future studies may explore their clinical applications in cardiac health.

9.
Environ Toxicol ; 39(9): 4360-4371, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38760990

ABSTRACT

The primary function of the skin is to form a mechanical, permeability, antimicrobial, and ultraviolet radiation barrier, which is essential for maintaining physiological homeostasis. Our previous studies demonstrated that cutaneous pigmentation could promote skin barrier function in addition to providing anti-ultraviolet irradiation defense. The present study aimed to develop a new regimen that enhances skin barrier function by regulating skin pigmentation using low-concentration imiquimod. Results showed that topical application of low-concentration imiquimod effectively induced skin hyperpigmentation in the dorsal skin and external ear of mice without inducing inflammatory cell infiltration. An in vitro study also revealed that low-concentration imiquimod did not induce any cytotoxic effects on melanoma cells but triggered excessive melanin synthesis. In coculture systems, low-concentration imiquimod was noted to increase tyrosinase activity in a broader cellular context, revealing the potential role of neighboring cells in melanin production. The next-generation sequencing result indicated that PKCη and Dnm3 might regulate melanin synthesis and release during imiquimod treatment. Overall, our study presents new insights into the regulation of melanin production by low-concentration imiquimod, both in a mice model and cultured cells. Furthermore, our study highlights the potential benefits of imiquimod in promoting melanin synthesis without causing skin disruptions or inducing inflammation, validating its potential to serve as a method for enhancing skin barrier functions by regulating the epidermal melanization reaction.


Subject(s)
Imiquimod , Melanins , Animals , Melanins/metabolism , Mice , Epidermis/drug effects , Epidermis/metabolism , Skin/drug effects , Skin/metabolism , Humans , Skin Pigmentation/drug effects , Mice, Inbred C57BL , Monophenol Monooxygenase/metabolism , Male , Hyperpigmentation/drug therapy
10.
Environ Toxicol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109785

ABSTRACT

Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function.

11.
J Cell Physiol ; 238(4): 829-841, 2023 04.
Article in English | MEDLINE | ID: mdl-36815383

ABSTRACT

Metastasis in breast cancer usually lead to the majority of deaths on clinical patients. Accordingly, diagnosis of metastasis at the early stage in breast cancer is important to improve the prognosis. We observed that Dicer protein levels are significant decrease in highly invasive breast cancer cells and usually correlated with poor clinical outcomes. Following, we aim to clarify the molecular regulatory mechanism of this phenomenon in breast cancer to provide a new therapeutic target. In this study, we obtained that Dicer expression correlated with metastasis and invasion without affect cell stability in breast cancer cells. Importantly, we identified the regulatory mechanism of Dicer protein degradation, the chaperone-mediated autophagy (CMA)-mediated degradation that is major mechanism to decrease Dicer protein expression and lead to cancer metastasis. We discovered that heat shock cognate 71-kDa protein (Hsc70) which as a CMA-related factor interacts with the CMA-targeting motif I333A/K334A on Dicer to promote degradation through CMA. Taken together, our findings hint that Dicer highly correlated with cancer metastasis, we reveal the tumor-promoting effect of CMA-mediated Dicer degradation in breast cancer.


Subject(s)
Breast Neoplasms , Chaperone-Mediated Autophagy , DEAD-box RNA Helicases , Ribonuclease III , Female , Humans , Autophagy/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , Lysosomes/metabolism , Proteolysis , Neoplasm Metastasis , DEAD-box RNA Helicases/metabolism , Ribonuclease III/metabolism
12.
J Cell Biochem ; 124(4): 619-632, 2023 04.
Article in English | MEDLINE | ID: mdl-36976911

ABSTRACT

Resistance to chemotherapy is the deadlock in cancer treatment. In this study, we used wild-type LOVO (LOVOWT ), a human colon cancer cell line, and the oxaliplatin-resistant sub-clone LOVOOR cells to investigate the molecular mechanisms of the development of drug resistance in colon cancer. Compared with LOVOWT cells, LOVOOR cells had a high proliferation capacity and a high percentage on the G2/M phase. The expression and activation of Aurora-A, a critical kinase in G2/M phase, were higher in LOVOOR cells than in LOVOWT cells. The results from immunofluorescence indicated an irregular distribution of Aurora-A in LOVOOR cells. To evaluate the importance of Aurora-A in oxaliplatin-resistant property of LOVOOR cells, overexpression of Aurora-A in LOVOWT cells and otherwise knockdown of Aurora-A in LOVOOR cells were performed and followed by administration of oxaliplatin. The results indicated that Aurora-A might contribute to the resistance of LOVOOR cells to oxaliplatin treatment by depressing p53 signaling. The specific findings in this study provide a possibility that targeting Aurora-A might be a solution for patients who have failed oxaliplatin treatment.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Humans , Oxaliplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Drug Resistance, Neoplasm
13.
Toxicol Appl Pharmacol ; 470: 116557, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37207915

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) is a global concern, often undetected until reaching an advanced stage. Palmitic acid (PA) is a type of fatty acid that increases and leads to liver apoptosis in MAFLD. However, there is currently no approved therapy or compound for MAFLD. Recently, branched fatty acid esters of hydroxy fatty acids (FAHFAs), a group of bioactive lipids, have emerged as promising agents to treat associated metabolic diseases. This study utilizes one type of FAHFA, oleic acid ester of 9-hydroxystearic acid (9-OAHSA), to treat PA-induced lipoapoptosis in an in vitro MAFLD model using rat hepatocytes and a high-fat high-cholesterol high-fructose (HFHCHFruc) diet in Syrian hamsters. The results indicate that 9-OAHSA rescues hepatocytes from PA-induced apoptosis and attenuates lipoapoptosis and dyslipidemia in Syrian hamsters. Additionally, 9-OAHSA decreases the generation of mitochondrial reactive oxygen species (mito-ROS) and stabilizes the mitochondrial membrane potential in hepatocytes. The study also demonstrates that the effect of 9-OAHSA on mito-ROS generation is at least partially mediated by PKC-δ signaling. These findings suggest that 9-OAHSA shows promise as a therapy for MAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Palmitic Acid , Cricetinae , Rats , Animals , Palmitic Acid/toxicity , Reactive Oxygen Species/metabolism , Mesocricetus , Fructose/toxicity , Hepatocytes , Fatty Acids/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Cholesterol/metabolism , Diet, High-Fat/adverse effects
14.
Mol Biol Rep ; 50(5): 4329-4338, 2023 May.
Article in English | MEDLINE | ID: mdl-36928640

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy is a progressive disease caused by inexplicit mechanisms, and a novel factor, insulin-like growth factor II receptor-α (IGF-IIRα), may contribute to aggravating its pathogenesis. We hypothesized that IGF-IIRα could intensify diabetic heart injury. METHODS AND RESULTS: To demonstrate the potential role of IGF-IIRα in the diabetic heart, we used (SD-TG [IGF-IIRα]) transgenic rat model with cardiac-specific overexpression of IGF-IIRα, along with H9c2 cells, to study the effects of IGF-IIRα in the heart under hyperglycemic conditions. IGF-IIRα was found to remodel calcium homeostasis and intracellular Ca2+ overload-induced autophagy disturbance in the heart during diabetes. IGF-IIRα overexpression induced intracellular Ca2+ alteration by downregulating phosphorylated phospholamban/sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (PLB/SERCA2a), resulting in the suppression of Ca2+ uptake into the endoplasmic reticulum. Additionally, IGF-IIRα itself contributed to Ca2+ withdrawal from the endoplasmic reticulum by increasing the expression of CaMKIIδ in the active form. Furthermore, alterations in Ca2+ homeostasis significantly dysregulated autophagy in the heart during diabetes. CONCLUSIONS: Our study reveals the novel role of IGF-IIRα in regulating cardiac intracellular Ca2+ homeostasis and its related autophagy interference, which contribute to the development of diabetic cardiomyopathy. In future, the present study findings have implications in the development of appropriate therapy to reduce diabetic cardiomyopathy.


Subject(s)
Calcium , Diabetic Cardiomyopathies , Rats , Animals , Calcium/metabolism , Insulin-Like Growth Factor II , Heart , Calcium-Binding Proteins/metabolism , Rats, Transgenic , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/pharmacology , Homeostasis , Myocytes, Cardiac/metabolism
15.
J Biochem Mol Toxicol ; 37(12): e23497, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37564025

ABSTRACT

Lung cancer is one of the most common cancers in the world. Chemotherapy is a standard clinical treatment. However, tumor cells often develop multidrug resistance after chemotherapy, an inevitable bottleneck in cancer treatment. Therefore, this study used gemcitabine-resistant (GEM-R) CL1-0 lung cancer cells. First, we used flow cytometry and western blot analysis to examine differences in performance between resistant and parental cells. The results showed that compared with parental cells, GEM-R CL1-0 cells significantly enhanced the activation of the AKT pathway, which promoted survival and growth, and decreased the activation of the reactive oxygen species-extracellular signal-regulated kinase (ROS)-ERK pathway. Next, the AKT and ERK pathways' role in tumor growth was further explored in vivo using a xenograft model. The results showed that enhancing AKT and inhibiting ERK activation reduced GEM-induced inhibition of tumor growth. Finally, combining the above results, we found that GEM-R CL1-0 cells showed reduced sensitivity to GEM by activating the phosphatidylinositol 3-kinase/AKT/NF-kB pathway and inhibiting the ROS-ERK pathway leading to resistance against GEM. Therefore, the AKT and ERK pathways are potential targets for improving the sensitivity of cancer cells to anticancer drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Gemcitabine , NF-kappa B/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cell Line, Tumor , Apoptosis
16.
Biotechnol Appl Biochem ; 70(6): 2052-2068, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37731306

ABSTRACT

Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.


Subject(s)
Adenocarcinoma of Lung , Antineoplastic Agents , Bacillus pumilus , Lung Neoplasms , Humans , Cyanides/pharmacology , Cyanides/therapeutic use , Cell Line, Tumor , Adenocarcinoma of Lung/drug therapy , Apoptosis , Antineoplastic Agents/pharmacology , Cell Proliferation , Lung Neoplasms/metabolism
17.
Mol Cell ; 58(6): 989-1000, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26051179

ABSTRACT

The regulation of RagA(GTP) is important for amino-acid-induced mTORC1 activation. Although GATOR1 complex has been identified as a negative regulator for mTORC1 by hydrolyzing RagA(GTP), how GATOR1 is recruited to RagA to attenuate mTORC1 signaling remains unclear. Moreover, how mTORC1 signaling is terminated upon amino acid stimulation is also unknown. We show that the recruitment of GATOR1 to RagA is induced by amino acids in an mTORC1-dependent manner. Skp2 E3 ligase drives K63-linked ubiquitination of RagA, which facilitates GATOR1 recruitment and RagA(GTP) hydrolysis, thereby providing a negative feedback loop to attenuate mTORC1 lysosomal recruitment and prevent mTORC1 hyperactivation. We further demonstrate that Skp2 promotes autophagy but inhibits cell size and cilia growth through RagA ubiquitination and mTORC1 inhibition. We thereby propose a negative feedback whereby Skp2-mediated RagA ubiquitination recruits GATOR1 to restrict mTORC1 signaling upon sustained amino acid stimulation, which serves a critical mechanism to maintain proper cellular functions.


Subject(s)
Amino Acids/pharmacology , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , S-Phase Kinase-Associated Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy/genetics , Cell Line, Tumor , Enzyme Activation/drug effects , Feedback, Physiological/drug effects , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Immunoblotting , Lysine/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Microscopy, Confocal , Models, Biological , NIH 3T3 Cells , Protein Binding/drug effects , RNA Interference , S-Phase Kinase-Associated Proteins/genetics , Ubiquitination/drug effects
18.
Phytother Res ; 37(9): 3964-3981, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37186468

ABSTRACT

Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-ß activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Insulin-Like Growth Factor II , Rats , Animals , Cardiotoxicity/drug therapy , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/pharmacology , Insulin-Like Growth Factor II/therapeutic use , Receptors, Estrogen/metabolism , Doxorubicin/adverse effects , Oxidative Stress , Myocytes, Cardiac , Apoptosis
19.
Drug Chem Toxicol ; 46(5): 1044-1050, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36216784

ABSTRACT

To date, few studies have investigated the toxicological effects of the combined use of amphetamine and heroin in the heart. Hence, the aim of this study was to identify indicators for clinical evaluation and prevention of cardiac injury induced by the combined use of amphetamine and heroin. Four different groups were analyzed: (1) normal group (n=25;average age=35 ± 6.8); (2) heart disease group (n=25;average age=58 ± 17.2); (3) drug abusers (n = 27; average age = 37 ± 7.7); (4) drug abstainers (previous amphetamine-heroin users who had been drug-free for more than two weeks; n = 22; average age = 35 ± 5.6). The activity of MMPs, and levels of TNF-α, IL-6, GH, IGF-I, and several serum biomarkers were examined to evaluate the impact of drug abuse on the heart. The selected plasma biomarkers and classic cardiac biomarkers were significantly increased compared to the normal group. The zymography data showed the changes in cardiac-remodeling enzymes MMP-9 and MMP-2 among combined users of amphetamine and heroin. The levels of TNF-α and IL-6 only increased in the heart disease group. Growth hormone was increased; however, IGF-I level decreased with drug abuse and the level was not restored by abstinence. We speculated that the amphetamine-heroin users might pose risk to initiate heart disease even though the users abstained for more than two weeks. The activity change of MMP-9 and MMP-2 can be a direct reason affecting heart function. The indirect reason may be related to liver damage by drug abuse reduce IGF-1 production to protect heart function.


Subject(s)
Heart Diseases , Heart Injuries , Heroin Dependence , Humans , Adult , Middle Aged , Aged , Insulin-Like Growth Factor I , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Heroin , Heroin Dependence/complications , Interleukin-6 , Tumor Necrosis Factor-alpha , Amphetamine , Biomarkers
20.
Environ Toxicol ; 38(4): 857-866, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36629037

ABSTRACT

Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, can reduce the population of dopaminergic neurons in the substantia nigra. The cause of this neuronal death remains unclear. 1-Methyl-4-phenylpyridinium ion (MPP+) is a potent neurotoxin that can destroy dopaminergic (DA) neurons and promote PD. Garcinol, a polyisoprenylated benzophenone derivative, was extracted from Garcinia indica and is an important active compound it has been used as an anticancer, antioxidant, and anti-inflammatory, agent and it can suppress reactive oxygen species (ROS) mediated cell death in a PD model. Human neuroblastoma (SH-SY5Y) cells (1 × 105 cells) were treated with MPP+ (1 mM) for 24 h to induce cellular ROS production. The formation of ROS was suppressed by pretreatment with different concentrations of garcinol (0.5 and 1.0 µM) for 3 h in SH-SY5Y cells. The present study found that MPP+ treatment increased the formation of reactive oxygen species (ROS), and the increased ROS began to promote cell death in SH-SY5Y cells. However, our natural compound garcinol effectively blocked MPP+-mediated ROS formation by activating the DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway. Further findings indicate that the activated SIRT1 can also regulate p-AMPK-mediated autophagy to protect the neurons from the damage it concludes that garcinol sub-sequential regulates intracellular autophagy in this model, and the productive efficacy of garcinol was confirmed by western blot analysis and MitoSOX DCFDA and MTT assays. The results showed garcinol increased protection due to the prevention of MPP+-induced ROS and the promotion of cell survival.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Parkinson Disease , Humans , Antioxidants/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Reactive Oxygen Species/metabolism , AMP-Activated Protein Kinases/metabolism , Oxidative Stress , Sirtuin 1/metabolism , Cell Line, Tumor , Cell Death , Autophagy , Cell Survival , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL