Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Genes Dev ; 35(1-2): 117-132, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33334825

ABSTRACT

The p53 tumor suppressor protein is a potent activator of proliferative arrest and cell death. In normal cells, this pathway is restrained by p53 protein degradation mediated by the E3-ubiquitin ligase activity of MDM2. Oncogenic stress releases p53 from MDM2 control, so activating the p53 response. However, many tumors that retain wild-type p53 inappropriately maintain the MDM2-p53 regulatory loop in order to continuously suppress p53 activity. We have shown previously that single point mutations in the human MDM2 RING finger domain prevent the interaction of MDM2 with the E2/ubiquitin complex, resulting in the loss of MDM2's E3 activity without preventing p53 binding. Here, we show that an analogous mouse MDM2 mutant (MDM2 I438K) restrains p53 sufficiently for normal growth but exhibits an enhanced stress response in vitro. In vivo, constitutive expression of MDM2 I438K leads to embryonic lethality that is rescued by p53 deletion, suggesting MDM2 I438K is not able to adequately control p53 function through development. However, the switch to I438K expression is tolerated in adult mice, sparing normal cells but allowing for an enhanced p53 response to DNA damage. Viewed as a proof of principle model for therapeutic development, our findings support an approach that would inhibit MDM2 E3 activity without preventing MDM2/p53 binding as a promising avenue for development of compounds to activate p53 in tumors with reduced on-target toxicities.


Subject(s)
Embryonic Development/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Animals , Antineoplastic Agents, Hormonal/pharmacology , Cell Proliferation/genetics , Cells, Cultured , Embryo, Mammalian/enzymology , Enzyme Activation/drug effects , Female , Male , Mice , Mutation , Tamoxifen/pharmacology
2.
EMBO J ; 43(6): 904-930, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337057

ABSTRACT

Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.


Subject(s)
NF-kappa B , Ubiquitin , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Ubiquitin/metabolism , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Apoptosis/physiology , Inflammation/metabolism
3.
Nat Rev Mol Cell Biol ; 17(10): 626-42, 2016 10.
Article in English | MEDLINE | ID: mdl-27485899

ABSTRACT

Covalent attachment (conjugation) of one or more ubiquitin molecules to protein substrates governs numerous eukaryotic cellular processes, including apoptosis, cell division and immune responses. Ubiquitylation was originally associated with protein degradation, but it is now clear that ubiquitylation also mediates processes such as protein-protein interactions and cell signalling depending on the type of ubiquitin conjugation. Ubiquitin ligases (E3s) catalyse the final step of ubiquitin conjugation by transferring ubiquitin from ubiquitin-conjugating enzymes (E2s) to substrates. In humans, more than 600 E3s contribute to determining the fates of thousands of substrates; hence, E3s need to be tightly regulated to ensure accurate substrate ubiquitylation. Recent findings illustrate how E3s function on a structural level and how they coordinate with E2s and substrates to meticulously conjugate ubiquitin. Insights regarding the mechanisms of E3 regulation, including structural aspects of their autoinhibition and activation are also emerging.


Subject(s)
Ubiquitin-Protein Ligases/chemistry , Ubiquitination , Biocatalysis , Catalytic Domain , Humans , Hydrogen Bonding , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Ubiquitin/chemistry
4.
EMBO J ; 42(18): e113987, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37577760

ABSTRACT

Dysregulation of the PI3K/AKT pathway is a common occurrence in high-grade serous ovarian carcinoma (HGSOC), with the loss of the tumour suppressor PTEN in HGSOC being associated with poor prognosis. The cellular mechanisms of how PTEN loss contributes to HGSOC are largely unknown. We here utilise time-lapse imaging of HGSOC spheroids coupled to a machine learning approach to classify the phenotype of PTEN loss. PTEN deficiency induces PI(3,4,5)P3 -rich and -dependent membrane protrusions into the extracellular matrix (ECM), resulting in a collective invasion phenotype. We identify the small GTPase ARF6 as a crucial vulnerability of HGSOC cells upon PTEN loss. Through a functional proteomic CRISPR screen of ARF6 interactors, we identify the ARF GTPase-activating protein (GAP) AGAP1 and the ECM receptor ß1-integrin (ITGB1) as key ARF6 interactors in HGSOC regulating PTEN loss-associated invasion. ARF6 functions to promote invasion by controlling the recycling of internalised, active ß1-integrin to maintain invasive activity into the ECM. The expression of the CYTH2-ARF6-AGAP1 complex in HGSOC patients is inversely associated with outcome, allowing the identification of patient groups with improved versus poor outcome. ARF6 may represent a therapeutic vulnerability in PTEN-depleted HGSOC.


Subject(s)
Monomeric GTP-Binding Proteins , Ovarian Neoplasms , Humans , Female , Integrins/metabolism , Proteomics , Phosphatidylinositol 3-Kinases/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Monomeric GTP-Binding Proteins/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
5.
Blood ; 141(3): 244-259, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36206490

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.


Subject(s)
Leukemia, Myeloid, Acute , Ubiquitin-Protein Ligases , Humans , Animals , Mice , Ubiquitin-Protein Ligases/metabolism , Phosphoric Monoester Hydrolases/genetics , Signal Transduction/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Mutation
6.
Nat Chem Biol ; 19(3): 292-300, 2023 03.
Article in English | MEDLINE | ID: mdl-36280791

ABSTRACT

Glutamine synthetase (GS) activity is conserved from prokaryotes to humans, where the ATP-dependent production of glutamine from glutamate and ammonia is essential for neurotransmission and ammonia detoxification. Here, we show that mammalian GS uses glutamate and methylamine to produce a methylated glutamine analog, N5-methylglutamine. Untargeted metabolomics revealed that liver-specific GS deletion and its pharmacological inhibition in mice suppress hepatic and circulating levels of N5-methylglutamine. This alternative activity of GS was confirmed in human recombinant enzyme and cells, where a pathogenic mutation in the active site (R324C) promoted the synthesis of N5-methylglutamine over glutamine. N5-methylglutamine is detected in the circulation, and its levels are sustained by the microbiome, as demonstrated by using germ-free mice. Finally, we show that urine levels of N5-methylglutamine correlate with tumor burden and GS expression in a ß-catenin-driven model of liver cancer, highlighting the translational potential of this uncharacterized metabolite.


Subject(s)
Glutamine , Neoplasms , Humans , Mice , Animals , Glutamine/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Ammonia , Glutamic Acid/metabolism , Liver/metabolism , Neoplasms/metabolism , Homeostasis , Mammals
7.
Mol Cell ; 68(2): 456-470.e10, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053960

ABSTRACT

RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.


Subject(s)
Drug Discovery/methods , Enzyme Activators , Enzyme Inhibitors , Protein Multimerization/drug effects , Tumor Suppressor Proteins , Ubiquitin-Protein Ligase Complexes , X-Linked Inhibitor of Apoptosis Protein , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HEK293 Cells , HeLa Cells , Humans , Tumor Suppressor Proteins/agonists , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/antagonists & inhibitors , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin-Protein Ligases , X-Linked Inhibitor of Apoptosis Protein/agonists , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism
8.
Nat Chem Biol ; 18(4): 422-431, 2022 04.
Article in English | MEDLINE | ID: mdl-35027744

ABSTRACT

Ubiquitin (Ub) chain types govern distinct biological processes. K48-linked polyUb chains target substrates for proteasomal degradation, but the mechanism of Ub chain synthesis remains elusive due to the transient nature of Ub handover. Here, we present the structure of a chemically trapped complex of the E2 UBE2K covalently linked to donor Ub and acceptor K48-linked di-Ub, primed for K48-linked Ub chain synthesis by a RING E3. The structure reveals the basis for acceptor Ub recognition by UBE2K active site residues and the C-terminal Ub-associated (UBA) domain, to impart K48-linked Ub specificity and catalysis. Furthermore, the structure unveils multiple Ub-binding surfaces on the UBA domain that allow distinct binding modes for K48- and K63-linked Ub chains. This multivalent Ub-binding feature serves to recruit UBE2K to ubiquitinated substrates to overcome weak acceptor Ub affinity and thereby promote chain elongation. These findings elucidate the mechanism of processive K48-linked polyUb chain formation by UBE2K.


Subject(s)
Polyubiquitin , Ubiquitin , Polyubiquitin/metabolism , Protein Binding , Protein Domains , Ubiquitin/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
9.
Mol Cell ; 62(6): 807-809, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27315555

ABSTRACT

Qiu et al. (2016) show that a mono-ADP-ribosyltransferase, SdeA, from Legionella pneumophila catalyzes ADP-ribosylation of ubiquitin, allowing SdeA to modify substrate with ubiquitin in the absence of E1 and E2 enzymes.


Subject(s)
Ubiquitin , Ubiquitination , ADP Ribose Transferases , Humans , Legionella pneumophila/enzymology , Ubiquitin-Conjugating Enzymes/genetics
11.
Mol Cell ; 58(2): 297-310, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25801170

ABSTRACT

RING ubiquitin ligases (E3) recruit ubiquitin-conjugate enzymes (E2) charged with ubiquitin (Ub) to catalyze ubiquitination. Non-covalent Ub binding to the backside of certain E2s promotes processive polyUb formation, but the mechanism remains elusive. Here, we show that backside bound Ub (Ub(B)) enhances both RING-independent and RING-dependent UbcH5B-catalyzed donor Ub (Ub(D)) transfer, but with a more prominent effect in RING-dependent transfer. Ub(B) enhances RING E3s' affinities for UbcH5B-Ub, and RING E3-UbcH5B-Ub complex improves Ub(B)'s affinity for UbcH5B. A comparison of the crystal structures of a RING E3, RNF38, bound to UbcH5B-Ub in the absence and presence of Ub(B), together with molecular dynamics simulation and biochemical analyses, suggests Ub(B) restricts the flexibility of UbcH5B's α1 and α1ß1 loop. Ub(B) supports E3 function by stabilizing the RING E3-UbcH5B-Ub complex, thereby improving the catalytic efficiency of Ub transfer. Thus, Ub(B) serves as an allosteric activator of RING E3-mediated Ub transfer.


Subject(s)
Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/metabolism , Crystallography, X-Ray , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Zinc Fingers
12.
J Biol Chem ; 294(4): 1240-1249, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30523153

ABSTRACT

Ubiquitin (Ub)-conjugating enzymes and Ub ligases control protein degradation and regulate many cellular processes in eukaryotes. Cellular inhibitor of apoptosis protein-1 (cIAP1) plays a central role in apoptosis and tumor necrosis factor signaling. It harbors a C-terminal RING domain that homodimerizes to recruit E2∼Ub (where ∼ denotes a thioester bond) complex to catalyze Ub transfer. Noncovalent Ub binding to the backside of the E2 Ub-conjugating enzyme UbcH5 has previously been shown to enhance RING domain activity, but the molecular basis for this enhancement is unclear. To investigate how dimeric cIAP1 RING activates E2∼Ub for Ub transfer and what role noncovalently bound Ub has in Ub transfer, here we determined the crystal structure of the cIAP1 RING dimer bound to both UbcH5B covalently linked to Ub (UbcH5B-Ub) and a noncovalent Ub to 1.7 Å resolution. The structure along with biochemical analyses revealed that the cIAP1 RING domain interacts with UbcH5B-Ub and thereby promotes the formation of a closed UbcH5B-Ub conformation that primes the thioester bond for Ub transfer. We observed that the noncovalent Ub binds to the backside of UbcH5B and abuts UbcH5B's α1ß1-loop, which, in turn, stabilizes the closed UbcH5B-Ub conformation. Our results disclose the mechanism by which cIAP1 RING dimer activates UbcH5B∼Ub and indicate that noncovalent Ub binding further stabilizes the cIAP1-UbcH5B∼Ub complex in the active conformation to stimulate Ub transfer.


Subject(s)
Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , Protein Conformation , Ubiquitination
13.
J Biol Chem ; 293(26): 10071-10083, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29764934

ABSTRACT

The histone chaperone complex facilitates chromatin transcription (FACT) plays important roles in DNA repair, replication, and transcription. In the formation of this complex, structure-specific recognition protein-1 (SSRP1) heterodimerizes with suppressor of Ty 16 (SPT16). SSRP1 also has SPT16-independent functions, but how SSRP1 functions alone remains elusive. Here, using analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) techniques, we characterized human SSRP1 and that from the amoeba Dictyostelium discoideum and show that both orthologs form an elongated homodimer in solution. We found that substitutions in the SSRP1 pleckstrin homology domain known to bind SPT16 also disrupt SSRP1 homodimerization. Moreover, AUC and SAXS analyses revealed that SSRP1 homodimerization and heterodimerization with SPT16 (resulting in FACT) involve the same SSRP1 surface, namely the PH2 region, and that the FACT complex contains only one molecule of SSRP1. These observations suggest that SSRP1 homo- and heterodimerization might be mutually exclusive. Moreover, isothermal titration calorimetry analyses disclosed that SSRP1 binds both histones H2A-H2B and H3-H4 and that disruption of SSRP1 homodimerization decreases its histone-binding affinity. Together, our results provide evidence for regulation of SSRP1 by homodimerization and suggest a potential role for homodimerization in facilitating SPT16-independent functions of SSRP1.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/chemistry , High Mobility Group Proteins/metabolism , Histones/metabolism , Protein Multimerization , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Amino Acid Sequence , Dictyostelium , Humans , Protein Binding , Protein Domains , Protein Structure, Quaternary
14.
Mol Cell ; 33(4): 483-95, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19250909

ABSTRACT

Ubiquitin and ubiquitin-like proteins (UBLs) are directed to targets by cascades of E1, E2, and E3 enzymes. The largest ubiquitin E3 subclass consists of cullin-RING ligases (CRLs), which contain one each of several cullins (CUL1, -2, -3, -4, or -5) and RING proteins (RBX1 or -2). CRLs are activated by ligation of the UBL NEDD8 to a conserved cullin lysine. How is cullin NEDD8ylation specificity established? Here we report that, like UBE2M (also known as UBC12), the previously uncharacterized E2 UBE2F is a NEDD8-conjugating enzyme in vitro and in vivo. Biochemical and structural analyses indicate how plasticity of hydrophobic E1-E2 interactions and E1 conformational flexibility allow one E1 to charge multiple E2s. The E2s have distinct functions, with UBE2M/RBX1 and UBE2F/RBX2 displaying different target cullin specificities. Together, these studies reveal the molecular basis for and functional importance of hierarchical expansion of the NEDD8 conjugation system in establishing selective CRL activation.


Subject(s)
Cullin Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cells, Cultured , Mice , Models, Molecular , Molecular Sequence Data , NIH 3T3 Cells , Protein Conformation , Protein Folding , Ubiquitin-Protein Ligases/chemistry , Ubiquitins/chemistry
15.
BMC Biol ; 14: 76, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27609087

ABSTRACT

BACKGROUND: Casitas B-lineage lymphoma (Cbl or c-Cbl) is a RING ubiquitin ligase that negatively regulates protein tyrosine kinase (PTK) signalling. Phosphorylation of a conserved residue (Tyr371) on the linker helix region (LHR) between the substrate-binding and RING domains is required to ubiquitinate PTKs, thereby flagging them for degradation. This conserved Tyr is a mutational hotspot in myeloproliferative neoplasms. Previous studies have revealed that select point mutations in Tyr371 can potentiate transformation in cells and mice but not all possible mutations do so. To trigger oncogenic potential, Cbl Tyr371 mutants must perturb the LHR-substrate-binding domain interaction and eliminate PTK ubiquitination. Although structures of native and pTyr371-Cbl are available, they do not reveal how Tyr371 mutations affect Cbl's conformation. Here, we investigate how Tyr371 mutations affect Cbl's conformation in solution and how this relates to Cbl's ability to potentiate transformation in cells. RESULTS: To explore how Tyr371 mutations affect Cbl's properties, we used surface plasmon resonance to measure Cbl mutant binding affinities for E2 conjugated with ubiquitin (E2-Ub), small angle X-ray scattering studies to investigate Cbl mutant conformation in solution and focus formation assays to assay Cbl mutant transformation potential in cells. Cbl Tyr371 mutants enhance E2-Ub binding and cause Cbl to adopt extended conformations in solution. LHR flexibility, RING domain accessibility and transformation potential are associated with the extent of LHR-substrate-binding domain perturbation affected by the chemical nature of the mutation. More disruptive mutants like Cbl Y371D or Y371S are more extended and the RING domain is more accessible, whereas Cbl Y371F mimics native Cbl in solution. Correspondingly, the only Tyr371 mutants that potentiate transformation in cells are those that perturb the LHR-substrate-binding domain interaction. CONCLUSIONS: c-Cbl's LHR mutations are only oncogenic when they disrupt the native state and fail to ubiquitinate PTKs. These findings provide new insights into how LHR mutations deregulate c-Cbl.


Subject(s)
Cell Proliferation , Myeloproliferative Disorders/genetics , Neoplasms/genetics , Oncogene Protein v-cbl/genetics , Point Mutation , Protein Conformation , 3T3 Cells , Animals , Mice , Oncogene Protein v-cbl/chemistry , Phosphorylation
16.
Mol Cancer Res ; 22(1): 94-103, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37756563

ABSTRACT

Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS: Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.


Subject(s)
Leukemia, Myeloid, Acute , Phosphoric Monoester Hydrolases , Animals , Mice , Leukemia, Myeloid, Acute/genetics , Mutation , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/genetics
17.
Nature ; 445(7126): 394-8, 2007 Jan 25.
Article in English | MEDLINE | ID: mdl-17220875

ABSTRACT

Ubiquitin-like proteins (UBLs) are conjugated by dynamic E1-E2-E3 enzyme cascades. E1 enzymes activate UBLs by catalysing UBL carboxy-terminal adenylation, forming a covalent E1 throught UBL thioester intermediate, and generating a thioester-linked E2 throught UBL product, which must be released for subsequent reactions. Here we report the structural analysis of a trapped UBL activation complex for the human NEDD8 pathway, containing NEDD8's heterodimeric E1 (APPBP1-UBA3), two NEDD8s (one thioester-linked to E1, one noncovalently associated for adenylation), a catalytically inactive E2 (Ubc12), and MgATP. The results suggest that a thioester switch toggles E1-E2 affinities. Two E2 binding sites depend on NEDD8 being thioester-linked to E1. One is unmasked by a striking E1 conformational change. The other comes directly from the thioester-bound NEDD8. After NEDD8 transfer to E2, reversion to an alternate E1 conformation would facilitate release of the E2 throught NEDD8 thioester product. Thus, transferring the UBL's thioester linkage between successive conjugation enzymes can induce conformational changes and alter interaction networks to drive consecutive steps in UBL cascades.


Subject(s)
Esters/metabolism , Sulfhydryl Compounds/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitins/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Crystallography, X-Ray , Esters/chemistry , Humans , Models, Molecular , NEDD8 Protein , Protein Conformation , Structure-Activity Relationship , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitins/chemistry
18.
Life Sci Alliance ; 5(12)2022 08 09.
Article in English | MEDLINE | ID: mdl-35944929

ABSTRACT

ARF tumor suppressor protein is a key regulator of the MDM2-p53 signaling axis. ARF interferes with MDM2-mediated ubiquitination and degradation of p53 by sequestering MDM2 in the nucleolus and preventing MDM2-p53 interaction and nuclear export of p53. Moreover, ARF also directly inhibits MDM2 ubiquitin ligase (E3) activity, but the mechanism remains elusive. Here, we apply nuclear magnetic resonance and biochemical analyses to uncover the mechanism of ARF-mediated inhibition of MDM2 E3 activity. We show that MDM2 acidic and zinc finger domains (AD-ZnF) form a weak intramolecular interaction with the RING domain, where the binding site overlaps with the E2∼ubiquitin binding surface and thereby partially reduces MDM2 E3 activity. Binding of human N-terminal 32 residues of p14ARF to the acidic domain of MDM2 strengthens the AD-ZnF-RING domain interaction. Furthermore, the N-terminal RxFxV motifs of p14ARF participate directly in the MDM2 RING domain interaction. This bivalent binding mode of p14ARF to MDM2 acidic and RING domains restricts E2∼ubiquitin recruitment and massively hinders MDM2 E3 activity. These findings elucidate the mechanism by which ARF inhibits MDM2 E3 activity.


Subject(s)
Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p14ARF , Ubiquitin-Protein Ligases , Humans , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p14ARF/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
J Mol Biol ; 433(5): 166807, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33450248

ABSTRACT

As a key regulator of the tumour suppressor protein p53, MDM2 is involved in various types of cancer and has thus been an attractive drug target. So far, small molecule design has primarily focussed on the N-terminal p53-binding domain although on-target toxicity effects have been reported. Targeting the catalytic RING domain of MDM2 resembles an alternative approach to drug MDM2 with the idea to prevent MDM2-mediated ubiquitination of p53 while retaining MDM2's ability to bind p53. The design of RING inhibitors has been limited by the extensive aggregation tendency of the RING domain, making it challenging to undertake co-crystallization attempts with potential inhibitors. Here we compare the purification profiles of the MDM2 RING domain from several species and show that the MDM2 RING domain of other species than human is much less prone to aggregate although the overall structure of the RING domain is conserved. Through sequence comparison and mutagenesis analyses, we identify a single point mutation, G443T, which greatly enhances the dimeric fraction of human MDM2 RING domain during purification. Neither does the mutation alter the structure of the RING domain, nor does it affect E2(UbcH5B)-Ub binding and activity. Hence, MDM2-G443T facilitates studies involving binding partners that would be hampered by the low solubility of the wild-type RING domain. Furthermore, it will be valuable for the development of MDM2 RING inhibitors.


Subject(s)
Protein Processing, Post-Translational , Proto-Oncogene Proteins c-mdm2/chemistry , Tumor Suppressor Protein p53/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Animals , Biocatalysis , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Gene Expression , Humans , Mammals , Models, Molecular , Protein Aggregates , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , Xenopus , Zebrafish
20.
Oncogene ; 40(12): 2149-2164, 2021 03.
Article in English | MEDLINE | ID: mdl-33627783

ABSTRACT

Casitas B-lineage lymphoma (CBL) is a ubiquitin ligase (E3) that becomes activated upon Tyr371-phosphorylation and targets receptor protein tyrosine kinases for ubiquitin-mediated degradation. Deregulation of CBL and its E3 activity is observed in myeloproliferative neoplasms and other cancers, including breast, colon, and prostate cancer. Here, we explore the oncogenic mechanism of E3-inactive CBL mutants identified in myeloproliferative neoplasms. We show that these mutants bind strongly to CIN85 under normal growth conditions and alter the CBL interactome. Lack of E3 activity deregulates CIN85 endosomal trafficking, leading to an altered transcriptome that amplifies signaling events to promote oncogenesis. Disruption of CBL mutant interactions with EGFR or CIN85 reduces oncogenic transformation. Given the importance of the CBL-CIN85 interaction in breast cancers, we examined the expression levels of CIN85, CBL, and the status of Tyr371-phosphorylated CBL (pCBL) in human breast cancer tissue microarrays. Interestingly, pCBL shows an inverse correlation with both CIN85 and CBL, suggesting that high expression of inactivated CBL could coordinate with CIN85 for breast cancer progression. Inhibition of the CBL-CIN85 interaction with a proline-rich peptide of CBL that binds CIN85 reduced the proliferation of MDA-MB-231 cells. Together, these results provide a rationale for exploring the potential of targeting the EGFR-CBL-CIN85 axis in CBL-inactivated mutant cancers.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Lymphoma, B-Cell/genetics , Proto-Oncogene Proteins c-cbl/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphoma, B-Cell/pathology , Mutation/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Protein Binding , Proteolysis , Tissue Array Analysis , Ubiquitin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL