Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain Res Bull ; 202: 110750, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37625524

ABSTRACT

The deposition of amyloid ß peptide (Aß) is one of the main pathological features of AD. The much-talked sensory gamma entrainment may be a new treatment for Aß load. Here we reviewed the generation and clearance pathways of Aß, aberrant gamma oscillation in AD, and the therapeutic effect of sensory gamma entrainment on AD. In addition, we discuss these results based on stimulus parameters and possible potential mechanisms. This provides the support for sensory gamma entrainment targeting Aß to improve AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Amyloidogenic Proteins/therapeutic use , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism
2.
Brain Res ; 1814: 148441, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37271490

ABSTRACT

40 Hz light flicker can activate multiple brain regions of wild-type mice. However, there are no systematic studies on the behavioral effects of 40 Hz light flicker on wild-type mice. Adult wild-type C57BL/6J mice were treated with 40 Hz light flicker (200 lx, 40 Hz, 1 h/day for 3 weeks) to evaluate its effects on several behaviors, including mood, locomotor activity, memory, social interaction, mechanical pain, and sense of smell. In the open field test, the elevated zero-maze test, forced swimming test, and tail suspension test, 40 Hz mice showed no anxiety and depression-like behaviors. In the rotarod test, no differences were found between the anti-fatigue ability and motor coordination ability. In memory-related tests, 40 Hz mice showed the short-term cognitive enhancement in the novel object recognition test. Interestingly, 40 Hz mice showed no enhanced the long-term memory performance in the contextual fear conditioning test, and tone-cued fear conditioning test. Besides, 40 Hz mice increased their exploration of social cues that were unfamiliar to them and differed significantly from their own experiences. In terms of sensory abilities, 40 Hz mice had unchanged pain sensitivity in the von Frey fiber test and significant enhancement in the olfactory ability in the food-seeking test. In conclusion, this 40 Hz light stimulation paradigm has high safety and can improve the specific behavioral ability, which provides a theoretical basis for the future use of 40 Hz light flicker as a disease prevention or treatment method.


Subject(s)
Behavior, Animal , Motor Activity , Mice , Animals , Mice, Inbred C57BL , Motor Activity/physiology , Fear/psychology , Maze Learning/physiology , Pain
SELECTION OF CITATIONS
SEARCH DETAIL