Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunol Rev ; 321(1): 280-299, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37850797

ABSTRACT

Neutrophils are important in the context of innate immunity and actively contribute to the progression of diverse autoimmune disorders. Distinct death mechanisms of neutrophils may exhibit specific and pivotal roles in autoimmune diseases and disease pathogenesis through the orchestration of immune homeostasis, the facilitation of autoantibody production, the induction of tissue and organ damage, and the incitement of pathological alterations. In recent years, more studies have provided in-depth examination of various neutrophil death modes, revealing nuances that challenge conventional understanding and underscoring their potential clinical utility in diagnosis and treatment. This review explores the multifaceted processes and characteristics of neutrophil death, with a focus on tailored investigations within various autoimmune diseases. It also highlights the potential interplay between neutrophil death and the landscape of autoimmune disorders. The review encapsulates the pertinent pathways implicated in various neutrophil death mechanisms across diverse autoimmune diseases while also charts possible avenues for future research.


Subject(s)
Autoimmune Diseases , Neutrophils , Humans , Immunity, Innate
2.
FASEB J ; 37(7): e23015, 2023 07.
Article in English | MEDLINE | ID: mdl-37256780

ABSTRACT

Keloid is a heterogeneous disease featured by the excessive production of extracellular matrix. It is a great challenge for both clinicians and patients regarding the exaggerated and uncontrolled outgrowth and the therapeutic resistance of the disease. In this study, we verified that UCHL1 was drastically upregulated in keloid fibroblasts. UCHL1 had no effects on cell proliferation and migration, but instead promoted collagen I and α-SMA expression that was inhibited by silencing UCHL1 gene and by adding in LDN-57444, a pharmacological inhibitor for UCHL1 activity as well. The pathological process was mediated by IGF-1 promoted Akt/mTOR/HIF-1α signaling pathway because inhibition of any of them could reduce the expression of collagen I and α-SMA driven by UCHL1 in fibroblasts. Also, we found that UCHL1 expression in keloid fibroblasts was promoted by M2 macrophages via TGF-ß1. These findings extend our understanding of the pathogenesis of keloid and provide potential therapeutic targets for the disease.


Subject(s)
Keloid , Skin Diseases , Humans , Cell Proliferation , Cells, Cultured , Collagen Type I/metabolism , Fibroblasts/metabolism , Insulin-Like Growth Factor I/metabolism , Keloid/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Skin Diseases/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
3.
Environ Res ; 251(Pt 2): 118670, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493849

ABSTRACT

The surfactant-enhanced bioremediation (SEBR) of organic-contaminated soil is a promising soil remediation technology, in which surfactants not only mobilize pollutants, but also alter the mobility of bacteria. However, the bacterial response and underlying mechanisms remain unclear. In this study, the effects and mechanisms of action of a selected nonionic surfactant (Tween 80) on Pseudomonas aeruginosa transport in soil and quartz sand were investigated. The results showed that bacterial migration in both quartz sand and soil was significantly enhanced with increasing Tween 80 concentration, and the greatest migration occurred at a critical micelle concentration (CMC) of 4 for quartz sand and 30 for soil, with increases of 185.2% and 27.3%, respectively. The experimental results and theoretical analysis indicated that Tween 80-facilitated bacterial migration could be mainly attributed to competition for soil/sand surface sorption sites between Tween 80 and bacteria. The prior sorption of Tween 80 onto sand/soil could diminish the available sorption sites for P. aeruginosa, resulting in significant decreases in deposition parameters (70.8% and 33.3% decrease in KD in sand and soil systems, respectively), thereby increasing bacterial transport. In the bacterial post-sorption scenario, the subsequent injection of Tween 80 washed out 69.8% of the bacteria retained in the quartz sand owing to the competition of Tween 80 with pre-sorbed bacteria, as compared with almost no bacteria being eluted by NaCl solution. Several machine learning models have been employed to predict Tween 80-faciliated bacterial transport. The results showed that back-propagation neural network (BPNN)-based machine learning could predict the transport of P. aeruginosa through quartz sand with Tween 80 in-sample (2 CMC) and out-of-sample (10 CMC) with errors of 0.79% and 3.77%, respectively. This study sheds light on the full understanding of SEBR from the viewpoint of degrader facilitation.


Subject(s)
Biodegradation, Environmental , Machine Learning , Polysorbates , Pseudomonas aeruginosa , Surface-Active Agents , Polysorbates/chemistry , Surface-Active Agents/chemistry , Pseudomonas aeruginosa/drug effects , Soil Microbiology , Porosity , Soil Pollutants/chemistry
4.
Langmuir ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36621519

ABSTRACT

Numerous cationic magnetic nanoparticles (MNPs) have previously been developed for demulsifying oil-in-water (O/W) emulsion, and results showed that the cationic MNPs could effectively flocculate and remove the negatively charged oil droplets via charge attraction; however, to the best of our knowledge, there are no research reports regarding the synergetic influence of both the positive charge density and interfacial activity of MNPs on the demulsification performance. In this study, three tertiary amine polymer-grafted MNPs, namely, poly(2-dimethylaminoethyl acrylate)-grafted MNPs (M-PDMAEA), poly(2-dimethylamino)ethyl methacrylate)-grafted MNPs (M-PDMAEMA), and poly(2-diethylaminoethyl methacrylate)-grafted MNPs (M-PDEAEMA), were synthesized and evaluated for their demulsification performance. Results demonstrated that a high positive charge density and superior interfacial activity of MNPs could cause partial oil droplet re-dispersion when excessive MNPs were introduced, leading to a lower magnetic separation efficiency and narrower demulsification window. Herein, a demulsification window is defined as a range of nanoparticle dosages in which the MNPs can effectively demulsify the O/W emulsion under certain conditions. For highly positively charged MNPs, their good interfacial activity could aggravate the formation of a narrower demulsification window. When tertiary amine polymer-grafted MNPs carried a lower positive charge density or weak interfacial activity, that is, M-PDMAEA at pH 4.0, M-PDMAEMA at pH 5.0-9.0, and M-PDEAEMA at pH 9.0-10.0, wide demulsification windows were observed. Additionally, a recycling experiment suggested that MNPs could maintain high demulsification efficiency up to at least five cycles, indicating their satisfactory recyclability. The three tertiary amine polymer-grafted MNPs can be potentially used for efficient demulsification from surfactant-free O/W emulsion in various pH ranges.

5.
Environ Res ; 218: 115045, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36513125

ABSTRACT

Centralized water supply in rural areas, supported by small waterworks (small-central mode) and by municipal water treatment plants (urban-extension mode), is an important guarantee to implement the Rural Revitalization Strategy Plan (2018-2022) in China. Opportunistic pathogens (OPs) could not be evaluated by the national drinking water sanitation standards in China (GB 5749-2022), posing potential microbial risks in rural drinking water. In this study, the spatiotemporal distribution of OPs, microbial community and the associated functional composition under two central water supply modes were investigated by molecular approaches. The results indicated that OPs were widely presented in the rural drinking water regardless of water supply modes, and were more abundant than those in the urban tap water. The insufficient residual chlorine and higher turbidity triggered more microbial proliferation, posing a seasonal variation of OPs gene copy numbers and bacterial community compositions. In warm seasons of summer and autumn, the gene copies of E. coli, M. avium, Pseudomonas spp. and the amoeba host Acanthamoeba spp. achieved up to 4.92, 3.94, 6.75 and 3.74 log10 (gene copies/mL), respectively. Potential functional prediction indicated higher relative abundance of pathogenic genes and infectious risks associated with the rural drinking water under small-central water supply mode. This one-year survey of the spatiotemporal distribution of OPs and microbial community provided scientific insights into microbial safety of rural drinking water, prompting attention on small-central water supply mode against OPs risks.


Subject(s)
Drinking Water , Microbiota , Escherichia coli , Water Supply , Bacteria/genetics , Water Microbiology
6.
J Environ Manage ; 338: 117762, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37003224

ABSTRACT

This study assessed the techno-economic feasibility of a biorefinery for valuable by-products (mainly hydrogen, ethanol and fertilizer) generation from food waste. The plant was designed to be built in Zhejiang province (China) with a processing capacity of 100 t food waste per day. It was found that the total capital investment (TCI) and annual operation cost (AOC) of the plant were US$ 7625549 and US$ 2432290.7 year-1, respectively. After the tax, US$ 3141867.6 year-1 of net profit could be reached. The payback period (PBP) was 3.5 years at a 7% discount rate. The internal rate of return (IRR) and return on investment (ROI) were 45.54% and 43.88%, respectively. Shutdown condition could happen with the feed of food waste less than 7.84 t day-1 (2587.2 t year-1) for the plant. This work was beneficial for attracting interests and even investment for valuable by-products generation from food waste in large scale.


Subject(s)
Food , Refuse Disposal , Cost-Benefit Analysis , China , Hydrogen
7.
Ann Rheum Dis ; 81(11): 1504-1514, 2022 11.
Article in English | MEDLINE | ID: mdl-35760450

ABSTRACT

OBJECTIVES: Age-associated B cells (ABCs) are a recently identified B cell subset, whose expansion has been increasingly linked to the pathogenesis of autoimmune disorders. This study aimed to investigate whether ABCs are involved in the pathogenesis and underlying mechanisms of rheumatoid arthritis (RA). METHODS: ABCs were assessed in collagen-induced arthritis (CIA) mice and patients with RA using flow cytometry. Transcriptomic features of RA ABCs were explored using RNA-seq. Primary fibroblast-like synoviocytes (FLS) derived from the synovial tissue of patients with RA were cocultured with ABCs or ABCs-conditioned medium (ABCsCM). IL-6, MMP-1, MMP-3 and MMP-13 levels in the coculture supernatant were detected by ELISA. Signalling pathways related to ABCs-induced FLS activation were examined using western blotting. RESULTS: Increased ABCs levels in the blood, spleen and inflammatory joints of CIA mice were observed. Notably, ABCs were elevated in the blood, synovial fluid and synovial tissue of patients with RA and positively correlated with disease activity. RNA-seq revealed upregulated chemotaxis-related genes in RA ABCs compared with those in naive and memory B cells. Coculture of FLS with RA ABCs or ABCsCM led to an active phenotype of FLS, with increased production of IL-6, MMP-1, MMP-3 and MMP-13. Mechanistically, ABCsCM-derived TNF-α promoted the upregulation of interferon-stimulated genes in FLS, with elevated phosphorylation of ERK1/2 and STAT1. Furthermore, blockage of ERK1/2 and Janus Kinase (JAK)-STAT1 pathways inhibited the activation of FLS induced by ABCsCM. CONCLUSIONS: Our results suggest that ABCs contribute to the pathogenesis of RA by inducing the activation of FLS via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Animals , Arthritis, Experimental/pathology , B-Lymphocytes , Cells, Cultured , Culture Media, Conditioned , Fibroblasts/metabolism , Interferons , Interleukin-6/metabolism , Janus Kinases/metabolism , MAP Kinase Signaling System , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Mice , STAT1 Transcription Factor , Synovial Membrane/metabolism , Synoviocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Water Sci Technol ; 85(4): 1191-1201, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35228363

ABSTRACT

Fermentative volatile fatty acids (VFAs) production from waste activated sludge (WAS) under moderate temperature is a promising way for resource and energy regeneration in municipal wastewater treatment plants (MWTPs). In this study, the effect of temperature on VFAs production and the associated microbial community from riboflavin-assisted WAS fermentation were investigated. Three fermentative reactors under 25, 35 and 55 °C were operated for 30 days, respectively. The results indicated that riboflavin enhanced VFAs production from WAS fermentation under moderate temperatures (25 °C, 35 °C), increasing conversion of organic matters to bioavailable substrates for the subsequent acidification process. Although a small dosage of riboflavin (1.0 ± 0.05 mM) hardly inhibited the methanogenic process, it could mediate the electron sink for VFAs under lower temperatures. This in turn increased the accumulation of acetic and propionic acids (up to 234 mg/g of volatile suspended solids) and their proportions relative to the total VFAs, being efficient electron donors and carbon sources for nutrient removal in MWTPs. Furthermore, microbial communities were shifted in response to temperature, and riboflavin stimulated the special fermentative bacteria under room temperature and mesophilic conditions. The study suggested a feasible and eco-friendly method to improve VFAs production from crude WAS at a relatively lower temperature.


Subject(s)
Microbiota , Sewage , Bioreactors , Fatty Acids, Volatile , Fermentation , Hydrogen-Ion Concentration , Riboflavin , Sewage/microbiology , Temperature
9.
Water Sci Technol ; 81(11): 2401-2409, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32784283

ABSTRACT

Two-stage anaerobic system (S1: R1 (acidogenic phase) + R2 (methanogenic phase)) and the one-stage control (S0) were established to investigate the effect of phase separation on the removal of an azo dye orange II, i.e., Acid Orange 7 (AO7), with starch as the primary co-substrate. Although final AO7 removal from two systems showed no statistical differences, the first-order rate constants for AO7 removal (kAO7-) and sulfanilic acid (SA) formation (kSA) were higher in S1. Kinetic analysis showed that kAO7- and kSA in S1 were 2.7-fold and 1.7-fold of those in S0, respectively, indicating the benefit of phase separation to the AO7 reduction. However, this benefit only appeared in the period with influent AO7 concentrations higher than 2.14 mM. Otherwise, this advantage would be hidden due to the longer HRT (5 d) and sufficient electron donor (1.0 g starch L-1). Within S1, R1 only contributed about 10% of the entire AO7 removal, and kAO7- in R1 (0.172 h-1) was much lower than in R2 (0.503 h-1). The methanogenic phase rather than acidogenic phase was the main contribution to AO7 removal, because the influent of R2 had more available electron donors and suitable pH condition (pH 6.5-7.0) for the bio-reduction process.


Subject(s)
Azo Compounds , Starch , Anaerobiosis , Benzenesulfonates , Coloring Agents , Kinetics
10.
Ann Rheum Dis ; 76(11): 1941-1948, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28814429

ABSTRACT

BACKGROUND: Nintedanib is an inhibitor targeting platelet-derived growth factor receptor, fibroblast growth factor receptor and vascular endothelial growth factor receptor tyrosine kinases that has recently been approved for the treatment of idiopathic pulmonary fibrosis. The aim of this study was to analyse the effects of nintedanib in the fos-related antigen-2 (Fra2) mouse model of systemic sclerosis (SSc). METHODS: The effects of nintedanib on pulmonary arterial hypertension with proliferation of pulmonary vascular smooth muscle cells (PVSMCs) and luminal occlusion, on microvascular disease with apoptosis of microvascular endothelial cells (MVECs) and on fibroblast activation with myofibroblast differentiation and accumulation of extracellular matrix were analysed. We also studied the effects of nintedanib on the levels of key mediators involved in the pathogenesis of SSc and on macrophage polarisation. RESULTS: Nintedanib inhibited proliferation of PVSMCs and prevented thickening of the vessel walls and luminal occlusion of pulmonary arteries. Treatment with nintedanib also inhibited apoptosis of MVECs and blunted the capillary rarefaction in Fra2-transgenic mice. These effects were associated with a normalisation of the serum levels of vascular endothelial growth factor in Fra2 mice on treatment with nintedanib. Nintedanib also effectively blocked myofibroblast differentiation and reduced pulmonary, dermal and myocardial fibrosis in Fra2-transgenic mice. The antifibrotic effects of nintedanib were associated with impaired M2 polarisation of monocytes and reduced numbers of M2 macrophages. CONCLUSION: Nintedanib targets core features of SSc in Fra2-transgenic mice and ameliorates histological features of pulmonary arterial hypertension, destructive microangiopathy and pulmonary and dermal fibrosis. These data might have direct implications for the ongoing phase III clinical trial with nintedanib in SSc-associated interstitial lung disease.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Scleroderma, Systemic/drug therapy , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Fibrosis , Fos-Related Antigen-2 , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Macrophage Activation/drug effects , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pulmonary Artery/drug effects , Scleroderma, Systemic/complications , Scleroderma, Systemic/pathology , Vascular Endothelial Growth Factor A/blood
11.
Ann Rheum Dis ; 75(1): 226-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25180292

ABSTRACT

BACKGROUND: Sirt1 is a member of the sirtuin family of proteins. Sirt1 is a class III histone deacetylase with important regulatory roles in transcription, cellular differentiation, proliferation and metabolism. As aberrant epigenetic modifications have been linked to the pathogenesis of systemic sclerosis (SSc), we aimed to investigate the role of Sirt1 in fibroblast activation. METHODS: Sirt1 expression was analysed by real-time PCR, western blot and immunohistochemistry. Sirt1 signalling was modulated with the Sirt1 agonist resveratrol and by fibroblast-specific knockout. The role of Sirt1 was evaluated in bleomycin-induced skin fibrosis and in mice overexpressing a constitutively active transforming growth fac-tor-ß (TGF-ß) receptor I (TBRIact). RESULTS: The expression of Sirt1 was decreased in patients with SSc and in experimental fibrosis in a TGF-ß-dependent manner. Activation of Sirt1 potentiated the profibrotic effects of TGF-ß with increased Smad reporter activity, elevated transcription of TGF-ß target genes and enhanced release of collagen. In contrast, knockdown of Sirt1 inhibited TGF-ß/SMAD signalling and reduced release of collagen in fibroblasts. Consistently, mice with fibroblast-specific knockdown of Sirt1 were less susceptible to bleomycin- or TBRIact-induced fibrosis. CONCLUSIONS: We identified Sirt1 as a crucial regulator of TGF-ß/Smad signalling in SSc. Although Sirt1 is downregulated, this decrease is not sufficient to counterbalance the excessive activation of TGF-ß signalling in SSc. However, augmentation of this endogenous regulatory mechanism, for example, by knockdown of Sirt1, can effectively inhibit TGF-ß signalling and exerts potent antifibrotic effects. Sirt1 may thus be a key regulator of fibroblast activation in SSc.


Subject(s)
Fibroblasts/metabolism , Scleroderma, Systemic/metabolism , Sirtuin 1/physiology , Skin/pathology , Transforming Growth Factor beta/physiology , Adult , Aged , Animals , Bleomycin , Case-Control Studies , Cells, Cultured , Disease Models, Animal , Down-Regulation/physiology , Female , Fibrosis , Humans , Male , Mice, Knockout , Middle Aged , Scleroderma, Systemic/pathology , Signal Transduction/physiology , Skin/metabolism
12.
Ann Rheum Dis ; 75(3): 586-92, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25589515

ABSTRACT

BACKGROUND: Activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element binding (CREB) family of transcription factors, regulates cellular response to stress including oxidative stress. The aim of this study was to analyse the role of ATF3 in fibroblast activation in systemic sclerosis (SSc). METHODS: ATF3 was analysed by reverse transcription quantitative PCR, western blot and immunohistochemistry. ATF3 knockout fibroblasts and mice were used to study the functional role of ATF3. Knockdown experiments, reporter assays and coimmunoprecipitation were performed to study the effects of ATF3 on Smad and activation protein 1 (AP-1) signalling. The role of c-Jun was analysed by costaining, specific inactivation and coimmunoprecipitation. RESULTS: Transforming growth factor-ß (TGFß) upregulates the expression of ATF3 in SSc fibroblasts. ATF3-deficient fibroblasts were less sensitive to TGFß, whereas ectopic expression of ATF3 enhanced the profibrotic effects of TGFß. Mechanistically, ATF3 interacts with Smad3 directly on stimulation with TGFß and regulates Smad activity in a c-Jun-dependent manner. Knockout of ATF3 protected mice from bleomycin-induced fibrosis and fibrosis induced by overexpression of a constitutively active TGFß receptor I. Reporter assays and analyses of the expression of Smad target genes demonstrated that binding of ATF3 regulates the transcriptional activity of Smad3. CONCLUSIONS: We demonstrate for the first time a key role for ATF3 in fibrosis. Knockout of the ATF3 gene reduced the stimulatory effect of TGFß on fibroblasts by interfering with canonical Smad signalling and protected the mice from experimental fibrosis in two different models. ATF3 might thus be a candidate for molecular targeted therapies for SSc.


Subject(s)
Activating Transcription Factor 3/genetics , Fibroblasts/metabolism , Scleroderma, Systemic/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Adult , Aged , Animals , Blotting, Western , Case-Control Studies , Dermis/cytology , Female , Fibrosis/genetics , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunohistochemistry , Male , Mice , Mice, Knockout , Middle Aged , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-jun/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta , Reverse Transcriptase Polymerase Chain Reaction , Scleroderma, Systemic/metabolism , Signal Transduction/genetics , Transcription Factor AP-1/metabolism , Young Adult
13.
Ann Rheum Dis ; 75(5): 883-90, 2016 May.
Article in English | MEDLINE | ID: mdl-25858641

ABSTRACT

BACKGROUND: Nintedanib is a tyrosine kinase inhibitor that has recently been shown to slow disease progression in idiopathic pulmonary fibrosis in two replicate phase III clinical trials. The aim of this study was to analyse the antifibrotic effects of nintedanib in preclinical models of systemic sclerosis (SSc) and to provide a scientific background for clinical trials in SSc. METHODS: The effects of nintedanib on migration, proliferation, myofibroblast differentiation and release of extracellular matrix of dermal fibroblasts were analysed by microtitre tetrazolium and scratch assays, stress fibre staining, qPCR and SirCol assays. The antifibrotic effects of nintedanib were evaluated in bleomycin-induced skin fibrosis, in a murine sclerodermatous chronic graft-versus-host disease model and in tight-skin-1 mice. RESULTS: Nintedanib dose-dependently reduced platelet-derived growth factor-induced and transforming growth factor-ß-induced proliferation and migration as well as myofibroblast differentiation and collagen release of dermal fibroblasts from patients with and healthy individuals. Nintedanib also inhibited the endogenous activation of SSc fibroblasts. Nintedanib prevented bleomycin-induced skin fibrosis in a dose-dependent manner and was also effective in the treatment of established fibrosis. Moreover, treatment with nintedanib ameliorated fibrosis in the chronic graft-versus-host disease model and in tight-skin-1 mice in well-tolerated doses. CONCLUSIONS: We demonstrate that nintedanib effectively inhibits the endogenous as well as cytokine-induced activation of SSc fibroblasts and exerts potent antifibrotic effects in different complementary mouse models of SSc. These data have direct translational implications for clinical trials with nintedanib in SSc.


Subject(s)
Fibroblasts/drug effects , Indoles/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Scleroderma, Systemic/drug therapy , Animals , Bleomycin , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , Fibroblasts/pathology , Fibroblasts/physiology , Fibrosis , Graft vs Host Disease/prevention & control , Humans , Indoles/administration & dosage , Indoles/pharmacology , Male , Mice, Inbred BALB C , Mice, Mutant Strains , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Scleroderma, Systemic/pathology , Skin/drug effects , Skin/pathology
14.
Ann Rheum Dis ; 74(7): 1408-16, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24567525

ABSTRACT

OBJECTIVES: We have previously described the antifibrotic role of the soluble guanylate cyclase (sGC). The mode of action, however, remained elusive. In the present study, we describe a novel link between sGC signalling and transforming growth factor ß (TGFß) signalling that mediates the antifibrotic effects of the sGC. METHODS: Human fibroblasts and murine sGC knockout fibroblasts were treated with the sGC stimulator BAY 41-2272 or the stable cyclic guanosine monophosphate (cGMP) analogue 8-Bromo-cGMP and stimulated with TGFß. sGC knockout fibroblasts were isolated from sGCI(fl/fl) mice, and recombination was induced by Cre-adenovirus. In vivo, we studied the antifibrotic effects of BAY 41-2272 in mice overexpressing a constitutively active TGF-ß1 receptor. RESULTS: sGC stimulation inhibited TGFß-dependent fibroblast activation and collagen release. sGC knockout fibroblasts confirmed that the sGC is essential for the antifibrotic effects of BAY 41-2272. Furthermore, 8-Bromo-cGMP reduced TGFß-dependent collagen release. While nuclear p-SMAD2 and 3 levels, SMAD reporter activity and transcription of classical TGFß target genes remained unchanged, sGC stimulation blocked the phosphorylation of ERK. In vivo, sGC stimulation inhibited TGFß-driven dermal fibrosis but did not change p-SMAD2 and 3 levels and TGFß target gene expression, confirming that non-canonical TGFß pathways mediate the antifibrotic sGC activity. CONCLUSIONS: We elucidated the antifibrotic mode of action of the sGC that increases cGMP levels, blocks non-canonical TGFß signalling and inhibits experimental fibrosis. Since sGC stimulators have shown excellent efficacy and tolerability in phase 3 clinical trials for pulmonary arterial hypertension, they may be further developed for the simultaneous treatment of fibrosis and vascular disease in systemic sclerosis.


Subject(s)
Fibroblasts/pathology , Guanylate Cyclase/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/physiopathology , Signal Transduction/physiology , Skin/pathology , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Case-Control Studies , Cells, Cultured , Collagen/metabolism , Cyclic GMP/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Fibrosis/metabolism , Fibrosis/prevention & control , Guanylate Cyclase/deficiency , Humans , In Vitro Techniques , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice , Mice, Knockout , Pyrazoles/pharmacology , Pyridines/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/deficiency , Receptors, Transforming Growth Factor beta/drug effects , Receptors, Transforming Growth Factor beta/metabolism , Scleroderma, Systemic/metabolism , Signal Transduction/drug effects , Skin/metabolism , Smad Proteins/metabolism , Soluble Guanylyl Cyclase , Transforming Growth Factor beta/metabolism
15.
Ann Rheum Dis ; 74(3): e20, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24448349

ABSTRACT

BACKGROUND: Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily. Its ligand, 1,25-(OH)2D, is a metabolically active hormone derived from vitamin D3. The levels of vitamin D3 are decreased in patients with systemic sclerosis (SSc). Here, we aimed to analyse the role of VDR signalling in fibrosis. METHODS: VDR expression was analysed in SSc skin, experimental fibrosis and human fibroblasts. VDR signalling was modulated by siRNA and with the selective agonist paricalcitol. The effects of VDR on Smad signalling were analysed by reporter assays, target gene analyses and coimmunoprecipitation. The effects of paricalcitol were evaluated in the models of bleomycin-induced fibrosis and fibrosis induced by overexpression of a constitutively active transforming growth factor-ß (TGF-ß) receptor I (TBRI(CA)). RESULTS: VDR expression was decreased in fibroblasts of SSc patients and murine models of SSc in a TGF-ß-dependent manner. Knockdown of VDR enhanced the sensitivity of fibroblasts towards TGF-ß. In contrast, activation of VDR by paricalcitol reduced the stimulatory effects of TGF-ß on fibroblasts and inhibited collagen release and myofibroblast differentiation. Paricalcitol stimulated the formation of complexes between VDR and phosphorylated Smad3 in fibroblasts to inhibit Smad-dependent transcription. Preventive and therapeutic treatment with paricalcitol exerted potent antifibrotic effects and ameliorated bleomycin- as well as TBRI(CA)-induced fibrosis. CONCLUSIONS: We characterise VDR as a negative regulator of TGF-ß/Smad signalling. Impaired VDR signalling with reduced expression of VDR and decreased levels of its ligand may thus contribute to hyperactive TGF-ß signalling and aberrant fibroblast activation in SSc.


Subject(s)
Fibroblasts/metabolism , Receptors, Calcitriol/metabolism , Scleroderma, Systemic/metabolism , Signal Transduction/physiology , Skin/metabolism , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Adult , Aged , Animals , Bleomycin/toxicity , Disease Models, Animal , Ergocalciferols/pharmacology , Female , Fibroblasts/drug effects , Fibrosis/chemically induced , Fibrosis/metabolism , Humans , Male , Mice , Middle Aged , RNA, Small Interfering/metabolism , Receptors, Calcitriol/agonists , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , Smad Proteins/drug effects , Transforming Growth Factor beta/drug effects , Young Adult
16.
Ann Rheum Dis ; 74(6): 1317-24, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24618263

ABSTRACT

OBJECTIVES: To investigate the role of liver X receptors (LXRs) in experimental skin fibrosis and evaluate their potential as novel antifibrotic targets. METHODS: We studied the role of LXRs in bleomycin-induced skin fibrosis, in the model of sclerodermatous graft-versus-host disease (sclGvHD) and in tight skin-1 (Tsk-1) mice, reflecting different subtypes of fibrotic disease. We examined both LXR isoforms using LXRα-, LXRß- and LXR-α/ß-double-knockout mice. Finally, we investigated the effects of LXRs on fibroblasts and macrophages to establish the antifibrotic mode of action of LXRs. RESULTS: LXR activation by the agonist T0901317 had antifibrotic effects in bleomycin-induced skin fibrosis, in the sclGvHD model and in Tsk-1 mice. The antifibrotic activity of LXRs was particularly prominent in the inflammation-driven bleomycin and sclGvHD models. LXRα-, LXRß- and LXRα/ß-double-knockout mice showed a similar response to bleomycin as wildtype animals. Low levels of the LXR target gene ABCA-1 in the skin of bleomycin-challenged and control mice suggested a low baseline activation of the antifibrotic LXR signalling, which, however, could be specifically activated by T0901317. Fibroblasts were not the direct target cells of LXRs agonists, but LXR activation inhibited fibrosis by interfering with infiltration of macrophages and their release of the pro-fibrotic interleukin-6. CONCLUSIONS: We identified LXRs as novel targets for antifibrotic therapies, a yet unknown aspect of these nuclear receptors. Our data suggest that LXR activation might be particularly effective in patients with inflammatory disease subtypes. Activation of LXRs interfered with the release of interleukin-6 from macrophages and, thus, inhibited fibroblast activation and collagen release.


Subject(s)
Fibroblasts/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Orphan Nuclear Receptors/genetics , Scleroderma, Diffuse/metabolism , Skin Diseases/metabolism , Skin/pathology , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Disease Models, Animal , Fibroblasts/drug effects , Fibrosis , Humans , Hydrocarbons, Fluorinated/pharmacology , Liver X Receptors , Macrophages/drug effects , Mice , Mice, Knockout , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/metabolism , Skin/drug effects , Skin Diseases/chemically induced , Sulfonamides/pharmacology
17.
Environ Technol ; 36(5-8): 1001-7, 2015.
Article in English | MEDLINE | ID: mdl-25270868

ABSTRACT

In this study, a coupled process of coagulation and aerated internal micro-electrolysis (IME) with the in situ addition of hydrogen peroxide (H2O2) was investigated for the treatment of nanofiltration (NF) concentrate from mature landfill leachate. The acceptable operating conditions were determined as follows: initial pH 4, polymeric aluminium chloride dosage of 525 mg-Al2O3/L in the coagulation process, H2O2 dosage of 0.75 mM and an hydraulic retention time of 2 h in an aerated IME reactor. As a result, the removal efficiencies for chemical oxygen demand (COD), total organic carbon, UV254 and colour were 79.2%, 79.6%, 81.8% and 90.8%, respectively. In addition, the ratio of biochemical oxygen demand (BOD5)/COD in the final effluent increased from 0.03 to 0.31, and that of E2/E4 from 12.4 to 38.5, respectively. The results indicate that the combined process is an effective and economical way to remove organic matters and to improve the biodegradability of the NF concentrate. Coagulation process reduces the adverse impact of high-molecular-weight organic matters such as humic acids, on the aerated IME process. A proper addition of H2O2 in the aerated IME can promote the corrosion of solid iron (Fe2+/Fe3+) and cause a likely domino effect in the enhancement of removal efficiencies.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Aluminum Chloride , Aluminum Compounds , Chlorides , Electrolysis , Hydrogen Peroxide , Hydrogen-Ion Concentration
18.
Ann Rheum Dis ; 73(6): 1264-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24445254

ABSTRACT

OBJECTIVES: The morphogen pathways Hedgehog, Wnt and Notch are attractive targets for antifibrotic therapies in systemic sclerosis. Interference with stem cell regeneration, however, may complicate the use of morphogen pathway inhibitors. We therefore tested the hypothesis that combination therapies with low doses of Hedgehog, Wnt and Notch inhibitors maybe safe and effective for the treatment of fibrosis. METHODS: Skin fibrosis was induced by bleomycin and by overexpression of a constitutively active TGF-ß receptor type I. Adverse events were assessed by clinical monitoring, pathological evaluation and quantification of Lgr5-positive intestinal stem cells. RESULTS: Inhibition of Hedgehog, Wnt and Notch signalling dose-dependently ameliorated bleomycin-induced and active TGF-ß receptor type I-induced fibrosis. Combination therapies with low doses of Hedgehog/Wnt inhibitors or Hedgehog/Notch inhibitors demonstrated additive antifibrotic effects in preventive as well as in therapeutic regimes. Combination therapies were well tolerated. In contrast with high dose monotherapies, combination therapies did not reduce the number of Lgr5 positive intestinal stem cells. CONCLUSIONS: Combined inhibition of morphogen pathways exerts additive antifibrotic effects. Combination therapies are well tolerated and, in contrast to high dose monotherapies, may not impair stem cell renewal. Combined targeting of morphogen pathways may thus help to overcome dose-limiting toxicity of Hedgehog, Wnt and Notch signalling.


Subject(s)
Fibrosis/drug therapy , Hedgehog Proteins/antagonists & inhibitors , Receptors, Notch/antagonists & inhibitors , Scleroderma, Systemic/drug therapy , Signal Transduction/drug effects , Skin/drug effects , Wnt Proteins/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Bleomycin , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Disease Models, Animal , Drug Therapy, Combination , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Pyrimidinones/pharmacology , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Veratrum Alkaloids/pharmacology , Wnt Signaling Pathway/drug effects
19.
Front Immunol ; 15: 1372432, 2024.
Article in English | MEDLINE | ID: mdl-38903527

ABSTRACT

Background: Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods: We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results: Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions: Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Humans , Neoplasms/immunology , Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Transcriptome
20.
Cell Oncol (Dordr) ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427207

ABSTRACT

PURPOSE: The Chromobox (CBX) family proteins are crucial elements of the epigenetic regulatory machinery and play a significant role in the development and advancement of cancer. Nevertheless, there is limited understanding regarding the role of CBXs in development or progression of prostate cancer (PCa). Our objective is to develop a unique prognostic model associated with CBXs to improve the accuracy of predicting outcomes of patients with PCa. METHODS: Data from TCGA and GEO databases were analyzed to assess differential expression, prognostic value, gene pathway enrichment, and immune cell infiltration. COX regression analysis was utilized to identify the independent prognostic factors that impact disease-free survival (DFS). The expression of CBX2 and FOXP3+ cells infiltration was verified by immunohistochemical staining of clinical tissue sections. In vitro proliferation, migration and invasion assay were conducted to examine the function of CBX2. RNA-seq was employed to examine the CBX2 related pathway enrichment. RESULTS: CBX2, CBX3, CBX4, and CBX8 were upregulated, while CBX6 and CBX7 were downregulated in PCa tissues. CBXs expression varied by stage and grade. Elevated expression of CBX1, CBX2, CBX3, CBX4 and CBX8 is correlated with poor outcome. CBX2 expression, T stage, and Gleason score were independent prognostic factors. The expression level of CBX2 in PCa tissues was significantly higher than that in adjacent normal tissues. More Treg infiltration was observed in the group with high CBX2 expression. CBX2 expression affected PCa cell growth, migration, and invasion. CONCLUSIONS: CBX2 is involved in the development and advancement of PCa, suggesting its potential as a reliable prognostic indicator for PCa patients.

SELECTION OF CITATIONS
SEARCH DETAIL