Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Publication year range
1.
Nature ; 627(8005): 772-777, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538941

ABSTRACT

The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale1-10. However, the operation of the large number of qubits required for advantageous quantum applications11-13 will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher14-18. Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures19-21. We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation.

2.
Eur Heart J ; 44(16): 1464-1473, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36740401

ABSTRACT

AIMS: To examine associations of assisted reproductive technology (ART) conception (vs. natural conception: NC) with offspring cardiometabolic health outcomes and whether these differ with age. METHODS AND RESULTS: Differences in systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), lipids, and hyperglycaemic/insulin resistance markers were examined using multiple linear regression models in 14 population-based birth cohorts in Europe, Australia, and Singapore, and results were combined using meta-analysis. Change in cardiometabolic outcomes from 2 to 26 years was examined using trajectory modelling of four cohorts with repeated measures. 35 938 (654 ART) offspring were included in the meta-analysis. Mean age ranged from 13 months to 27.4 years but was <10 years in 11/14 cohorts. Meta-analysis found no statistical difference (ART minus NC) in SBP (-0.53 mmHg; 95% CI:-1.59 to 0.53), DBP (-0.24 mmHg; -0.83 to 0.35), or HR (0.02 beat/min; -0.91 to 0.94). Total cholesterol (2.59%; 0.10-5.07), HDL cholesterol (4.16%; 2.52-5.81), LDL cholesterol (4.95%; 0.47-9.43) were statistically significantly higher in ART-conceived vs. NC offspring. No statistical difference was seen for triglycerides (TG), glucose, insulin, and glycated haemoglobin. Long-term follow-up of 17 244 (244 ART) births identified statistically significant associations between ART and lower predicted SBP/DBP in childhood, and subtle trajectories to higher SBP and TG in young adulthood; however, most differences were not statistically significant. CONCLUSION: These findings of small and statistically non-significant differences in offspring cardiometabolic outcomes should reassure people receiving ART. Longer-term follow-up is warranted to investigate changes over adulthood in the risks of hypertension, dyslipidaemia, and preclinical and clinical cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Young Adult , Adult , Infant , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cohort Studies , Blood Pressure/physiology , Triglycerides , Reproductive Techniques, Assisted/adverse effects
3.
Int J Obes (Lond) ; 46(1): 211-219, 2022 01.
Article in English | MEDLINE | ID: mdl-34645936

ABSTRACT

BACKGROUND: Maternal obesity increases the risk of adverse long-term health outcomes in mother and child including childhood obesity. We aimed to investigate the association between interpregnancy weight gain between first and second pregnancies and risk of overweight and obesity in the second child. METHODS: We analysed the healthcare records of 4789 women in Hampshire, UK with their first two singleton live births within a population-based anonymised linked cohort of routine antenatal records (August 2004 and August 2014) with birth/early life data for their children. Measured maternal weight and reported height were recorded at the first antenatal appointment of each pregnancy. Measured child height and weight at 4-5 years were converted to age- and sex-adjusted body mass index (BMI z-score). Log-binomial regression was used to examine the association between maternal interpregnancy weight gain and risk of childhood overweight and obesity in the second child. This was analysed first in the whole sample and then stratified by baseline maternal BMI category. RESULTS: The prevalence of overweight/obesity in the second child was 19.1% in women who remained weight stable, compared with 28.3% in women with ≥3 kg/m2 weight gain. Interpregnancy gain of ≥3 kg/m2 was associated with increased risk of childhood overweight/obesity (adjusted relative risk (95% CI) 1.17 (1.02-1.34)), with attenuation on adjusting for birthweight of the second child (1.08 (0.94-1.24)). In women within the normal weight range at first pregnancy, the risks of childhood obesity (≥95th centile) were increased with gains of 1-3 kg/m2 (1.74 (1.07-2.83)) and ≥3 kg/m2 (1.87 (1.18-3.01)). CONCLUSION: Children of mothers within the normal weight range in their first pregnancy who started their second pregnancy with a considerably higher weight were more likely to have obesity at 4-5 years. Supporting return to pre-pregnancy weight and limiting weight gain between pregnancies may achieve better long-term maternal and offspring outcomes.


Subject(s)
Gestational Weight Gain/physiology , Pediatric Obesity/diagnosis , Adult , Child , Cohort Studies , Correlation of Data , Female , Gestational Weight Gain/genetics , Humans , Male , Pediatric Obesity/epidemiology , Pregnancy , Prevalence , Risk Factors , United Kingdom/epidemiology
4.
Eur J Nutr ; 61(5): 2383-2395, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35124728

ABSTRACT

PURPOSE: There is altered breastmilk composition among mothers with gestational diabetes and conflicting evidence on whether breastfeeding is beneficial or detrimental to their offspring's cardiometabolic health. We aimed to investigate associations between breastfeeding and offspring's cardiometabolic health across the range of gestational glycemia. METHODS: We included 827 naturally conceived, term singletons from a prospective mother-child cohort. We measured gestational (26-28 weeks) fasting plasma glucose (FPG) and 2-h plasma glucose (2 hPG) after an oral glucose tolerance test as continuous variables. Participants were classified into 2 breastfeeding categories (high/intermediate vs. low) according to their breastfeeding duration and exclusivity. Main outcome measures included magnetic resonance imaging (MRI)-measured abdominal fat, intramyocellular lipids (IMCL), and liver fat, quantitative magnetic resonance (QMR)-measured body fat mass, blood pressure, blood lipids, and insulin resistance at 6 years old (all continuous variables). We evaluated if gestational glycemia (FPG and 2 hPG) modified the association of breastfeeding with offspring outcomes after adjusting for confounders using a multiple linear regression model that included a 'gestational glycemia × breastfeeding' interaction term. RESULTS: With increasing gestational FPG, high/intermediate (vs. low) breastfeeding was associated with lower levels of IMCL (p-interaction = 0.047), liver fat (p-interaction = 0.033), and triglycerides (p-interaction = 0.007), after adjusting for confounders. Specifically, at 2 standard deviations above the mean gestational FPG level, high/intermediate (vs. low) breastfeeding was linked to lower adjusted mean IMCL [0.39% of water signal (0.29, 0.50) vs. 0.54% of water signal (0.46, 0.62)], liver fat [0.39% by weight (0.20, 0.58) vs. 0.72% by weight (0.59, 0.85)], and triglycerides [0.62 mmol/L (0.51, 0.72) vs. 0.86 mmol/L (0.75, 0.97)]. 2 hPG did not significantly modify the association between breastfeeding and childhood cardiometabolic risk. CONCLUSION: Our findings suggest breastfeeding may confer protection against adverse fat partitioning and higher triglyceride concentration among children exposed to increased glycemia in utero.


Subject(s)
Breast Feeding , Cardiovascular Diseases , Diabetes, Gestational , Blood Glucose , Body Mass Index , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Child , Diabetes, Gestational/pathology , Female , Humans , Lipids , Pregnancy , Prospective Studies , Triglycerides , Water
5.
Am J Epidemiol ; 184(7): 520-531, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27651384

ABSTRACT

Recent studies suggest that epigenetic programming may mediate the relationship between early life environment, including parental socioeconomic position, and adult cardiometabolic health. However, interpreting associations between early environment and adult DNA methylation may be difficult because of time-dependent confounding by life-course exposures. Among 613 adult women (mean age = 32 years) of the Jerusalem Perinatal Study Family Follow-up (2007-2009), we investigated associations between early life socioeconomic position (paternal occupation and parental education) and mean adult DNA methylation at 5 frequently studied cardiometabolic and stress-response genes (ABCA1, INS-IGF2, LEP, HSD11B2, and NR3C1). We used multivariable linear regression and marginal structural models to estimate associations under 2 causal structures for life-course exposures and timing of methylation measurement. We also examined whether methylation was associated with adult cardiometabolic phenotype. Higher maternal education was consistently associated with higher HSD11B2 methylation (e.g., 0.5%-point higher in 9-12 years vs. ≤8 years, 95% confidence interval: 0.1, 0.8). Higher HSD11B2 methylation was also associated with lower adult weight and total and low-density lipoprotein cholesterol. We found that associations with early life socioeconomic position measures were insensitive to different causal assumption; however, exploratory analysis did not find evidence for a mediating role of methylation in socioeconomic position-cardiometabolic risk associations.


Subject(s)
Cardiovascular Diseases/genetics , DNA Methylation , Epigenesis, Genetic/genetics , Metabolic Diseases/genetics , Socioeconomic Factors , Stress, Physiological/genetics , Adult , Age Factors , Educational Status , Female , Gene-Environment Interaction , Genetic Association Studies , Genetic Markers , Humans , Risk Factors
7.
Am J Epidemiol ; 182(7): 568-78, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26283086

ABSTRACT

Grandmaternal education may be related to grandchild birth weight (GBW) through maternal early-life development; however, conventional regression models may be endogenously confounded. Alternative models employing explicit structural assumptions may provide incrementally clearer evidence. We used data from the US National Longitudinal Study of Adolescent to Adult Health (1995-2009; 1,681 mother-child pairs) to estimate "direct effects" of grandmaternal educational level (less than high school, high school diploma or equivalent, or college degree) at the time of the mother's birth on GBW, adjusted for maternal life-course factors: maltreatment as a child, education and income as an adult, prepregnancy overweight, and prenatal smoking. Using conventional and marginal structural model (MSM) approaches, we estimated 54-g (95% confidence interval: -14.0, 122.1) and 87-g (95% confidence interval: 10.9, 162.5) higher GBWs per increase in educational level, respectively. The MSM allowed simultaneous mediation by and adjustment for prepregnancy overweight. Estimates were insensitive to alternate structural assumptions and mediator parameterizations. Bias analysis suggested that a single unmeasured confounder would have to have a strong influence on GBW (approximately 150 g) or be greatly imbalanced across exposure groups (approximately 25%) to completely explain the findings. Coupling an MSM with sensitivity analyses provides some evidence that maternal early-life socioeconomic environment is directly associated with offspring birth weight.


Subject(s)
Birth Weight , Adult , Educational Status , Family , Female , Humans , Longitudinal Studies , Regression Analysis , United States , Young Adult
8.
Nat Commun ; 15(1): 7656, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227618

ABSTRACT

Semiconductor spin qubits represent a promising platform for future large-scale quantum computers owing to their excellent qubit performance, as well as the ability to leverage the mature semiconductor manufacturing industry for scaling up. Individual qubit control, however, commonly relies on spectral selectivity, where individual microwave signals of distinct frequencies are used to address each qubit. As quantum processors scale up, this approach will suffer from frequency crowding, control signal interference and unfeasible bandwidth requirements. Here, we propose a strategy based on arrays of degenerate spins coherently dressed by a global control field and individually addressed by local electrodes. We demonstrate simultaneous on-resonance driving of two degenerate qubits using a global field while retaining addressability for qubits with equal Larmor frequencies. Furthermore, we implement SWAP oscillations during on-resonance driving, constituting the demonstration of driven two-qubit gates. Significantly, our findings highlight how dressing can overcome the fragility of entangling gates between superposition states and increase their noise robustness. These results constitute a paradigm shift in qubit control in order to overcome frequency crowding in large-scale quantum computing.

9.
Nat Commun ; 15(1): 4299, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769086

ABSTRACT

Spins of electrons in silicon MOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO2 as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO2 interface, compiling experiments across 12 devices, and develop theoretical tools to analyse these results. Atomistic tight binding and path integral Monte Carlo methods are adapted to describe fluctuations in devices with millions of atoms by directly analysing their wavefunctions and electron paths instead of their energy spectra. We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling. These variabilities are found to be bounded, and they lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.

11.
Paediatr Perinat Epidemiol ; 27(5): 472-80, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23930783

ABSTRACT

BACKGROUND: Maternal low birthweight and vitamin D deficiency in pregnancy are associated with a similar spectrum of adverse pregnancy outcomes including pre-eclampsia and gestational diabetes. However, the relationship between maternal birthweight and subsequent vitamin D concentrations in early pregnancy is largely unknown. METHODS: We assessed whether self-reported maternal birthweight was associated with risk of early pregnancy vitamin D deficiency (≤20 ng/mL) among a pregnancy cohort (n = 658). Serum 25-hydroxyvitamin D [25(OH)D] was measured using liquid chromatography-tandem mass spectroscopy. RESULTS: Adjusting for maternal characteristics and month of blood draw, a 100-g higher maternal birthweight was associated with a 5.7% decreased risk of early pregnancy 25(OH)D deficiency [odds ratio (OR) = 0.94; 95% confidence interval (CI) 0.90, 0.99]. Low-birthweight (<2500 g) women were 3.7 times as likely to have early pregnancy 25(OH)D deficiency compared with normal-birthweight women [OR = 3.69; 95% CI 1.63, 8.34]. These relationships were not modified by either pre-pregnancy overweight status [body mass index (BMI) ≥25 kg/m(2)] or adulthood weight trajectory (BMI change ≥2 kg/m(2) from age 18 to pre-pregnancy). CONCLUSIONS: Further research on shared developmental mechanisms that determine birthweight and vitamin D homeostasis may help identify targets and related preventative measures for adverse pregnancy and birth outcomes.


Subject(s)
Birth Weight , Pregnancy Complications/blood , Vitamin D Deficiency/blood , Vitamin D/analogs & derivatives , Adult , Chromatography, Liquid , Cohort Studies , Female , Humans , Pregnancy , Pregnancy Complications/etiology , Pregnancy Outcome , Prospective Studies , Risk Factors , Tandem Mass Spectrometry , United States , Vitamin D/blood , Vitamin D Deficiency/complications
12.
Adv Mater ; 35(19): e2208557, 2023 May.
Article in English | MEDLINE | ID: mdl-36805699

ABSTRACT

The small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors. Furthermore, classical control electronics can be integrated on-chip, in-between the qubits, if an architecture with sparse arrays of qubits is chosen. In such an architecture qubits are either transported across the chip via shuttling or coupled via mediating quantum systems over short-to-intermediate distances. This paper investigates the charge and spin characteristics of an elongated quantum dot-a so-called jellybean quantum dot-for the prospects of acting as a qubit-qubit coupler. Charge transport, charge sensing, and magneto-spectroscopy measurements are performed on a SiMOS quantum dot device at mK temperature and compared to Hartree-Fock multi-electron simulations. At low electron occupancies where disorder effects and strong electron-electron interaction dominate over the electrostatic confinement potential, the data reveals the formation of three coupled dots, akin to a tunable, artificial molecule. One dot is formed centrally under the gate and two are formed at the edges. At high electron occupancies, these dots merge into one large dot with well-defined spin states, verifying that jellybean dots have the potential to be used as qubit couplers in future quantum computing architectures.

13.
Nat Nanotechnol ; 18(2): 131-136, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36635331

ABSTRACT

Once called a 'classically non-describable two-valuedness' by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin-orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time T2,Hahn ≈ 50 µs, fast single-qubit gates with Tπ/2 = 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.

14.
iScience ; 25(9): 104860, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36046194

ABSTRACT

Prenatal maternal mental health is a global health challenge with poorly defined biological mechanisms. We used maternal blood samples collected during the second trimester from a Singaporean longitudinal birth cohort study to examine the association between inter-individual genome-wide DNA methylation and prenatal maternal depressive symptoms. We found that (1) the maternal methylome was significantly associated with prenatal maternal depressive symptoms only in mothers with a female fetus; and (2) this sex-dependent association was observed in a comparable, UK-based birth cohort study. Qualitative analyses showed fetal sex-specific differences in genomic features of depression-related CpGs and genes mapped from these CpGs in mothers with female fetuses implicated in a depression-associated WNT/ß-catenin signaling pathway. These same genes also showed enriched expression in brain regions linked to major depressive disorder. We also found similar female-specific associations with fetal-facing placenta methylome. Our fetal sex-specific findings provide evidence for maternal-fetal interactions as a mechanism for intergenerational transmission.

15.
J Hypertens ; 40(11): 2171-2179, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36205012

ABSTRACT

OBJECTIVE: To evaluate whether characterization of maternal and foetoplacental factors beyond birthweight can enable early identification of children at risk of developing prehypertension/hypertension. METHODS: We recruited 693 mother-offspring dyads from the GUSTO prospective mother-offspring cohort. Prehypertension/hypertension at age 6 years was identified using the simplified paediatric threshold of 110/70 mmHg. We evaluated the associations of pregnancy complications (gestational diabetes, excessive/inadequate gestational weight gain, hypertensive disorders of pregnancy), foetal growth deceleration (decline in foetal abdominal circumference at least 0.67 standard deviations between second and third trimesters), high foetoplacental vascular resistance (third trimester umbilical artery systolic-to-diastolic ratio ≥90th centile), preterm birth, small-for-gestational age and neonatal kidney volumes with risk of prehypertension/hypertension at age 6 years, after adjusting for sex, ethnicity, maternal education and prepregnancy BMI. RESULTS: Pregnancy complications, small-for-gestational age, preterm birth, and low neonatal kidney volume were not associated with an increased risk of prehypertension/hypertension at age 6 years. In contrast, foetal growth deceleration was associated with a 72% higher risk [risk ratio (RR) = 1.72, 95% confidence interval (CI) 1.18-2.52]. High foetoplacental vascular resistance was associated with a 58% higher risk (RR = 1.58, 95% CI 0.96-2.62). Having both these characteristics, relative to having neither, was associated with over two-fold higher risk (RR = 2.55, 95% CI 1.26-5.16). Over 85% of the foetuses with either of these characteristics were born appropriate or large for gestational age. CONCLUSION: Foetal growth deceleration and high foetoplacental vascular resistance may be helpful in prioritizing high-risk children for regular blood pressure monitoring and preventive interventions, across the birthweight spectrum.


Subject(s)
Hypertension , Pregnancy Complications , Prehypertension , Premature Birth , Birth Weight , Child , Child, Preschool , Female , Fetal Growth Retardation , Humans , Hypertension/epidemiology , Infant, Newborn , Pregnancy , Prehypertension/epidemiology , Premature Birth/epidemiology , Premature Birth/etiology , Prospective Studies , Weight Gain
16.
Trials ; 22(1): 520, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34362422

ABSTRACT

BACKGROUND: Randomised controlled trials in reproductive medicine are often subject to outcome truncation, where the study outcomes are only defined in a subset of the randomised cohort. Examples include birthweight (measurable only in the subgroup of participants who give birth) and miscarriage (which can only occur in participants who become pregnant). These outcomes are typically analysed by making a comparison between treatment arms within the subgroup (for example, comparing birthweights in the subgroup who gave birth or miscarriages in the subgroup who became pregnant). However, this approach does not represent a randomised comparison when treatment influences the probability of being observed (i.e. survival). The practical implications of this for the design and interpretation of reproductive trials are unclear however. METHODS: We developed a simulation platform to investigate the implications of outcome truncation for reproductive medicine trials. We used this to perform a simulation study, in which we considered the bias, type 1 error, coverage, and precision of standard statistical analyses for truncated continuous and binary outcomes. Simulation settings were informed by published assisted reproduction trials. RESULTS: Increasing treatment effect on the intermediate variable, strength of confounding between the intermediate and outcome variables, and the presence of an interaction between treatment and confounder were found to adversely affect performance. However, within parameter ranges we would consider to be more realistic, the adverse effects were generally not drastic. For binary outcomes, the study highlighted that outcome truncation could cause separation in smaller studies, where none or all of the participants in a study arm experience the outcome event. This was found to have severe consequences for inferences. CONCLUSION: We have provided a simulation platform that can be used by researchers in the design and interpretation of reproductive medicine trials subject to outcome truncation and have used this to conduct a simulation study. The study highlights several key factors which trialists in the field should consider carefully to protect against erroneous inferences. Standard analyses of truncated binary outcomes in small studies may be highly biassed, and it remains to identify suitable approaches for analysing data in this context.


Subject(s)
Abortion, Spontaneous , Reproductive Medicine , Bias , Female , Humans , Pregnancy , Randomized Controlled Trials as Topic
17.
Nat Commun ; 12(1): 3228, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34050152

ABSTRACT

An error-corrected quantum processor will require millions of qubits, accentuating the advantage of nanoscale devices with small footprints, such as silicon quantum dots. However, as for every device with nanoscale dimensions, disorder at the atomic level is detrimental to quantum dot uniformity. Here we investigate two spin qubits confined in a silicon double quantum dot artificial molecule. Each quantum dot has a robust shell structure and, when operated at an occupancy of 5 or 13 electrons, has single spin-[Formula: see text] valence electron in its p- or d-orbital, respectively. These higher electron occupancies screen static electric fields arising from atomic-level disorder. The larger multielectron wavefunctions also enable significant overlap between neighbouring qubit electrons, while making space for an interstitial exchange-gate electrode. We implement a universal gate set using the magnetic field gradient of a micromagnet for electrically driven single qubit gates, and a gate-voltage-controlled inter-dot barrier to perform two-qubit gates by pulsed exchange coupling. We use this gate set to demonstrate a Bell state preparation between multielectron qubits with fidelity 90.3%, confirmed by two-qubit state tomography using spin parity measurements.

18.
J Clin Endocrinol Metab ; 106(5): e2015-e2024, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33524127

ABSTRACT

CONTEXT: Cardiometabolic profiles of different body composition phenotypes are poorly characterized in young children, where it is well established that high adiposity is unfavorable, but the role of lean mass is unclear. OBJECTIVE: We hypothesized that higher lean mass attenuates cardiometabolic risk in children with high fat mass. METHODS: In 6-year-old children (n = 377) from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) prospective birth cohort, whole-body composition was measured by quantitative magnetic resonance, a novel validated technology. Based on fat mass index (FMI) and lean mass index (LMI), 4 body composition phenotypes were derived: low FMI-low LMI (LF-LL), low FMI-high LMI (LF-HL), high FMI-low LMI (HF-LL), high FMI-high LMI (HF-HL). MAIN OUTCOME MEASURES: Body mass index (BMI) z-score, fasting plasma glucose, insulin resistance, metabolic syndrome risk score, fatty liver index, and blood pressure. RESULTS: Compared with the LF-HL group, children in both high FMI groups had increased BMI z-score (HF-HL: 1.43 units 95% CI [1.11,1.76]; HF-LL: 0.61 units [0.25,0.96]) and metabolic syndrome risk score (HF-HL: 1.64 [0.77,2.50]; HF-LL: 1.28 [0.34,2.21]). The HF-HL group also had increased fatty liver index (1.15 [0.54,1.77]). Girls in HF-HL group had lower fasting plasma glucose (-0.29 mmol/L [-0.55,-0.04]) and diastolic blood pressure (-3.22 mmHg [-6.03,-0.41]) than girls in the HF-LL group. No similar associations were observed in boys. CONCLUSION: In a multi-ethnic Asian cohort, lean mass seemed to protect against some cardiometabolic risk markers linked with adiposity, but only in girls. The FMI seemed more important than lean mass index in relation to cardiometabolic profiles of young children.


Subject(s)
Adiposity , Body Composition , Body Mass Index , Cardiovascular Diseases/epidemiology , Insulin Resistance , Metabolic Syndrome/epidemiology , Obesity/physiopathology , Adult , Child , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Infant, Newborn , Male , Prognosis , Prospective Studies , Singapore/epidemiology
20.
Int J Epidemiol ; 49(5): 1591-1603, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32851407

ABSTRACT

BACKGROUND: Using longitudinal ultrasounds as an improved fetal growth marker, we aimed to investigate if fetal growth deceleration followed by rapid postnatal weight gain is associated with childhood cardiometabolic risk biomarkers in a contemporary well-nourished population. METHODS: We defined fetal growth deceleration (FGD) as ultrasound-measured 2nd-3rd-trimester abdominal circumference decrease by ≥0.67 standard deviation score (SDS) and rapid postnatal weight gain (RPWG) as 0-2-year-old weight increase by ≥0.67 SDS. In the GUSTO mother-offspring cohort, we grouped 797 children into four groups of FGD-only (14.2%), RPWG-only (23.3%), both (mismatch, 10.7%) or neither (reference, 51.8%). Adjusting for confounders and comparing with the reference group, we tested associations of these growth groups with childhood cardiometabolic biomarkers: magnetic resonance imaging (MRI)-measured abdominal fat (n = 262), liver fat (n = 216), intramyocellular lipids (n = 227), quantitative magnetic resonance-measured overall body fat % (BF%) (n = 310), homeostasis model assessment of insulin resistance (HOMA-IR) (n = 323), arterial wall thickness (n = 422) and stiffness (n = 443), and blood pressure trajectories (ages 3-6 years). RESULTS: Mean±SD birthweights were: FGD-only (3.11 ± 0.38 kg), RPWG-only (3.03 ± 0.37 kg), mismatch (2.87 ± 0.31 kg), reference (3.30 ± 0.36 kg). FGD-only children had elevated blood pressure trajectories without correspondingly increased BF%. RPWG-only children had altered body fat partitioning, higher BF% [BF = 4.26%, 95% confidence interval (CI) (2.34, 6.19)], HOMA-IR 0.28 units (0.11, 0.45)] and elevated blood pressure trajectories. Mismatch children did not have increased adiposity, but had elevated ectopic fat, elevated HOMA-IR [0.29 units (0.04,0.55)] and the highest blood pressure trajectories. Associations remained even after excluding small-for-gestational-age infants from analyses. CONCLUSIONS: Fetal growth deceleration coupled with rapid postnatal weight gain was associated with elevated childhood cardiometabolic risk biomarkers without correspondingly increased BF%.


Subject(s)
Adiposity , Insulin Resistance , Blood Pressure , Body Mass Index , Child , Child, Preschool , Cohort Studies , Fetal Development , Humans , Infant , Infant, Newborn , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL