Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Appl Microbiol ; 133(2): 972-986, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35560738

ABSTRACT

AIMS: In recent years, the incidence rate of hypertensive intracerebral haemorrhage (HICH) has been increasing, accompanied by high mortality and morbidity, which has brought a heavy burden to the social economy. However, the pathogenesis of HICH is still unclear. This study intends to explore the mechanism of gut microbiota metabolism and inflammation in the process of HICH to provide a theoretical basis for the diagnosis and treatment of HICH. METHODS AND RESULTS: HE staining showed that the brain tissues of model group had obvious oedema injury, which indicated that the HICH model was successfully constructed. ELISA analysis showed that IL-1ß and TNF-α levels in blood and brain tissues were significantly increased, and IL-10 level was significantly decreased in blood. IHC analysis showed that microglia and macrophages were activated in the model group. 16S rRNA sequence showed that the diversity of gut microbiota in HICH patients decreased. Also, the microbiota belonging to Firmicutes, Proteobacteria and Verrucomicrobia changed significantly. LC-MS/MS analysis showed that the metabolic phenotype of HICH patients changed. Also, the 3,7-dimethyluric acid- and 7-methylxanthine-related metabolic pathways of caffeine metabolism pathways were downregulated in patients with HICH. Bacteroides was negatively correlated with the IL-1ß and TNF-α levels. Blautia was negatively correlated with the IL-1ß and TNF-α levels, and positively correlated with the IL-10 level. Akkermansia was negatively correlated with the 3,7-dimethyluric acid and 7-methylxanthine. CONCLUSION: Our study suggested that HICH was accompanied by the increased inflammation marker levels in peripheral blood and brain, decreased gut microbiota diversity, altered gut metabolic phenotype and downregulation of caffeine metabolism pathway. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study reported that HICH accompanied by the increased inflammation, decreased gut microbiota diversity and altered gut metabolic phenotype. Due to the number of patients, this work was a pilot study.


Subject(s)
Gastrointestinal Microbiome , Intracranial Hemorrhage, Hypertensive , Caffeine/pharmacology , Chromatography, Liquid , Gastrointestinal Microbiome/genetics , Humans , Inflammation , Interleukin-10 , Pilot Projects , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha
2.
Mol Cell Biochem ; 404(1-2): 229-39, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25772485

ABSTRACT

MicroRNA (miRNA) dysregulation is causally related to cancer development and progression, and recent reports have revealed that DNA methylation constitutes an important mechanism for miRNA deregulation in cancer. MiR-129-2 has been reported to be down-regulated and functions as a tumor suppressor in a few human cancers. However, the involvement of miR-129-2 in the pathology of glioma and the mechanism underlying miR-129-2 regulation in glioma cells remain unclear. In this study, we performed quantitative PCR to investigate the level of miR-129-2 in 21 pairs of glioma tumors and matched adjacent tissues and found that miR-129-2 is down-regulated in glioma tumors. In vitro cell growth, apoptosis, cell migration, and invasion assays revealed that miR-129-2 functions as a tumor suppressor in glioma cells. Luciferase reporter assay found that miR-129-2 could directly target high-mobility group box 1 (HMGB1) and inhibit its expression in glioma cells. Methylation-specific PCR found that DNA methylation in upstream regions of miR-129-2 occured more frequently in cancer tissues than in adjacent tissues. Demethylation of miR-129-2 by 5-aza-2'-deoxycytidine treatment and quantitative PCR analysis revealed that miR-129-2 expression is epigenetically regulated in glioma cells. Taken together, our data suggested that miR-129-2 functions as a tumor suppressor in glioma cells by directly targeting HMGB1 and is down-regulated by DNA methylation, which may provide a novel therapeutic strategy for treatment of glioma.


Subject(s)
DNA Methylation/genetics , Glioma/genetics , HMGB1 Protein/biosynthesis , MicroRNAs/genetics , Apoptosis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Glioma/pathology , HMGB1 Protein/genetics , Humans , MicroRNAs/biosynthesis
3.
Int J Cosmet Sci ; 35(4): 346-53, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23336402

ABSTRACT

A micellar electrokinetic chromatography method using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, coupled with UV-Vis detection, was developed for the simultaneous determination of seven preservatives, including methyl-, ethyl-, propyl- and butyl-paraben and phenol, phenoxyethanol and resorcinol. The method involved optimizing the pH of the phosphate buffer and concentrations of CTAB, ethanol and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD). The preservatives were well separated using optimum conditions and separated within 10 min at a separation voltage of -12.5 kV with the 1.0 mM phosphate buffer (pH 7.0) containing 90 mM CTAB, 25 mM HP-ß-CD and 10% (v/v) ethanol. Satisfactory recoveries (84.1-103.0%), migration time (RSD < 3.1%) and peak area (RSD < 4.5%) repeatabilities were achieved. Detection limits of the preservatives were between 0.31 and 1.52 µg mL(-1) (S/N = 3, n = 5). The optimized method was successfully applied to the simultaneous determination of these preservatives in 10 commercial cosmetic products.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Cosmetics , Preservatives, Pharmaceutical/analysis , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Limit of Detection , Reproducibility of Results , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL