Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 555(7697): 469-474, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29539639

ABSTRACT

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Subject(s)
Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/genetics , DNA Methylation , Adolescent , Adult , Aged , Aged, 80 and over , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/pathology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Middle Aged , Reproducibility of Results , Unsupervised Machine Learning , Young Adult
2.
Acta Neuropathol ; 139(1): 193-209, 2020 01.
Article in English | MEDLINE | ID: mdl-31563982

ABSTRACT

The "isomorphic subtype of diffuse astrocytoma" was identified histologically in 2004 as a supratentorial, highly differentiated glioma with low cellularity, low proliferation and focal diffuse brain infiltration. Patients typically had seizures since childhood and all were operated on as adults. To define the position of these lesions among brain tumours, we histologically, molecularly and clinically analysed 26 histologically prototypical isomorphic diffuse gliomas. Immunohistochemically, they were GFAP-positive, MAP2-, OLIG2- and CD34-negative, nuclear ATRX-expression was retained and proliferation was low. All 24 cases sequenced were IDH-wildtype. In cluster analyses of DNA methylation data, isomorphic diffuse gliomas formed a group clearly distinct from other glial/glio-neuronal brain tumours and normal hemispheric tissue, most closely related to paediatric MYB/MYBL1-altered diffuse astrocytomas and angiocentric gliomas. Half of the isomorphic diffuse gliomas had copy number alterations of MYBL1 or MYB (13/25, 52%). Gene fusions of MYBL1 or MYB with various gene partners were identified in 11/22 (50%) and were associated with an increased RNA-expression of the respective MYB-family gene. Integrating copy number alterations and available RNA sequencing data, 20/26 (77%) of isomorphic diffuse gliomas demonstrated MYBL1 (54%) or MYB (23%) alterations. Clinically, 89% of patients were seizure-free after surgery and all had a good outcome. In summary, we here define a distinct benign tumour class belonging to the family of MYB/MYBL1-altered gliomas. Isomorphic diffuse glioma occurs both in children and adults, has a concise morphology, frequent MYBL1 and MYB alterations and a specific DNA methylation profile. As an exclusively histological diagnosis may be very challenging and as paediatric MYB/MYBL1-altered diffuse astrocytomas may have the same gene fusions, we consider DNA methylation profiling very helpful for their identification.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Adult , Brain Neoplasms/pathology , Child , Child, Preschool , DNA Copy Number Variations , DNA Methylation , Female , Glioma/pathology , Humans , Male , Middle Aged , Oncogene Fusion , Young Adult
4.
Proc Natl Acad Sci U S A ; 113(31): E4523-30, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27432954

ABSTRACT

The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-ß-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR.


Subject(s)
Antitubercular Agents/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Gene Expression Regulation, Bacterial , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Molecular Structure , Mutation , Mycobacterium tuberculosis/genetics , Protein Domains , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , S-Adenosylmethionine/metabolism
5.
Acta Neuropathol ; 136(2): 181-210, 2018 08.
Article in English | MEDLINE | ID: mdl-29967940

ABSTRACT

Recently, we described a machine learning approach for classification of central nervous system tumors based on the analysis of genome-wide DNA methylation patterns [6]. Here, we report on DNA methylation-based central nervous system (CNS) tumor diagnostics conducted in our institution between the years 2015 and 2018. In this period, more than 1000 tumors from the neurosurgical departments in Heidelberg and Mannheim and more than 1000 tumors referred from external institutions were subjected to DNA methylation analysis for diagnostic purposes. We describe our current approach to the integrated diagnosis of CNS tumors with a focus on constellations with conflicts between morphological and molecular genetic findings. We further describe the benefit of integrating DNA copy-number alterations into diagnostic considerations and provide a catalog of copy-number changes for individual DNA methylation classes. We also point to several pitfalls accompanying the diagnostic implementation of DNA methylation profiling and give practical suggestions for recurring diagnostic scenarios.


Subject(s)
Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Neoplasm Proteins/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Humans , Isocitrate Dehydrogenase/genetics , Male , Receptor Protein-Tyrosine Kinases/genetics , Retrospective Studies , Tumor Suppressor Proteins/genetics
6.
Acta Neuropathol ; 136(2): 293-302, 2018 08.
Article in English | MEDLINE | ID: mdl-29978331

ABSTRACT

Extraventricular neurocytoma (EVN) is a rare primary brain tumor occurring in brain parenchyma outside the ventricular system. Histopathological characteristics resemble those of central neurocytoma but exhibit a wider morphologic spectrum. Accurate diagnosis of these histologically heterogeneous tumors is often challenging because of the overlapping morphological features and the lack of defining molecular markers. Here, we explored the molecular landscape of 40 tumors diagnosed histologically as EVN by investigating copy number profiles and DNA methylation array data. DNA methylation profiles were compared with those of relevant differential diagnoses of EVN and with a broader spectrum of diverse brain tumor entities. Based on this, our tumor cohort segregated into different groups. While a large fraction (n = 22) formed a separate epigenetic group clearly distinct from established DNA methylation profiles of other entities, a subset (n = 14) of histologically diagnosed EVN grouped with clusters of other defined entities. Three cases formed a small group close to but separated from the epigenetically distinct EVN cases, and one sample clustered with non-neoplastic brain tissue. Four additional samples originally diagnosed otherwise were found to molecularly resemble EVN. Thus, our results highlight a distinct DNA methylation pattern for the majority of tumors diagnosed as EVN, but also indicate that approximately one third of morphological diagnoses of EVN epigenetically correspond to other brain tumor entities. Copy number analysis and confirmation through RNA sequencing revealed FGFR1-TACC1 fusion as a distinctive, recurrent feature within the EVN methylation group (60%), in addition to a small number of other FGFR rearrangements (13%). In conclusion, our data demonstrate a specific epigenetic signature of EVN suitable for characterization of these tumors as a molecularly distinct entity, and reveal a high frequency of potentially druggable FGFR pathway activation in this tumor group.


Subject(s)
Brain Neoplasms/genetics , Fetal Proteins/genetics , Microtubule-Associated Proteins/genetics , Neurocytoma/genetics , Nuclear Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , DNA Methylation/genetics , Female , Fetal Proteins/metabolism , Histones/genetics , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Kaplan-Meier Estimate , Ki-67 Antigen/metabolism , Male , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Retrospective Studies , Transcriptome
7.
Acta Neuropathol ; 136(2): 273-291, 2018 08.
Article in English | MEDLINE | ID: mdl-29564591

ABSTRACT

Tumors with histological features of pilocytic astrocytoma (PA), but with increased mitotic activity and additional high-grade features (particularly microvascular proliferation and palisading necrosis) have often been designated anaplastic pilocytic astrocytomas. The status of these tumors as a separate entity has not yet been conclusively demonstrated and molecular features have only been partially characterized. We performed DNA methylation profiling of 102 histologically defined anaplastic pilocytic astrocytomas. T-distributed stochastic neighbor-embedding (t-SNE) and hierarchical clustering analysis of these 102 cases against 158 reference cases from 12 glioma reference classes revealed that a subset of 83 of these tumors share a common DNA methylation profile that is distinct from the reference classes. These 83 tumors were thus denominated DNA methylation class anaplastic astrocytoma with piloid features (MC AAP). The 19 remaining tumors were distributed amongst the reference classes, with additional testing confirming the molecular diagnosis in most cases. Median age of patients with MC AAP was 41.5 years. The most frequent localization was the posterior fossa (74%). Deletions of CDKN2A/B (66/83, 80%), MAPK pathway gene alterations (49/65, 75%, most frequently affecting NF1, followed by BRAF and FGFR1) and mutations of ATRX or loss of ATRX expression (33/74, 45%) were the most common molecular alterations. All tumors were IDH1/2 wildtype. The MGMT promoter was methylated in 38/83 tumors (45%). Outcome analysis confirmed an unfavorable clinical course in comparison to PA, but better than IDH wildtype glioblastoma. In conclusion, we show that a subset of histologically defined anaplastic pilocytic astrocytomas forms a separate DNA methylation cluster, harbors recurrent alterations in MAPK pathway genes in combination with alterations of CDKN2A/B and ATRX, affects patients who are on average older than those diagnosed with PA and has an intermediate clinical outcome.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Isocitrate Dehydrogenase/genetics , Signal Transduction/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Female , Histones/genetics , Histones/metabolism , Humans , Infant , Kaplan-Meier Estimate , Male , Middle Aged , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation/genetics , Retrospective Studies , Tumor Suppressor Proteins/metabolism , X-linked Nuclear Protein/genetics , Young Adult
8.
Acta Neuropathol ; 136(1): 153-166, 2018 07.
Article in English | MEDLINE | ID: mdl-29687258

ABSTRACT

According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas comprised WHO grade II diffuse astrocytoma, IDH-mutant (AIIIDHmut), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIIIIDHmut), and WHO grade IV glioblastoma, IDH-mutant (GBMIDHmut). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined AIIIDHmut and AAIIIIDHmut have lost their significance. In contrast, GBMIDHmut still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation (CNV) profiles were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS) was CDKN2A/B homozygous deletion. Other parameters with major influence were necrosis and the total number of CNV. Proliferation as assessed by mitotic count, which is a key parameter in 2016 CNS WHO grading, was of only minor influence. Employing the parameters most relevant for OS in our discovery set, we developed two models for grading these tumors. These models performed significantly better than WHO grading in both the discovery and the validation sets. Our novel algorithms for grading IDH-mutant astrocytic gliomas overcome the challenges caused by introduction of IDH status into the WHO classification of diffuse astrocytic tumors. We propose that these revised approaches be used for grading of these tumors and incorporated into future WHO criteria.


Subject(s)
Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Adolescent , Adult , Aged , Algorithms , Astrocytoma/mortality , Brain Neoplasms/mortality , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Ki-67 Antigen/metabolism , Male , Middle Aged , Models, Biological , Neoplasm Grading , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , World Health Organization , Young Adult
9.
Eur J Nucl Med Mol Imaging ; 45(9): 1573-1584, 2018 07.
Article in English | MEDLINE | ID: mdl-29732524

ABSTRACT

PURPOSE: Dynamic 18F-FET PET/CT is a powerful tool for the diagnosis of gliomas.18F-FET PET time-activity curves (TAC) allow differentiation between histological low-grade gliomas (LGG) and high-grade gliomas (HGG). Molecular methods such as epigenetic profiling are of rising importance for glioma grading and subclassification. Here, we analysed dynamic 18F-FET PET data, and the histological and epigenetic features of 44 gliomas. METHODS: Dynamic 18F-FET PET was performed in 44 patients with newly diagnosed, untreated glioma: 10 WHO grade II glioma, 13 WHO grade III glioma and 21 glioblastoma (GBM). All patients underwent stereotactic biopsy or tumour resection after 18F-FET PET imaging. As well as histological analysis of tissue samples, DNA was subjected to epigenetic analysis using the Illumina 850 K methylation array. TACs, standardized uptake values corrected for background uptake in healthy tissue (SUVmax/BG), time to peak (TTP) and kinetic modelling parameters were correlated with histological diagnoses and with epigenetic signatures. Multivariate analyses were performed to evaluate the diagnostic accuracy of 18F-FET PET in relation to the tumour groups identified by histological and methylation-based analysis. RESULTS: Epigenetic profiling led to substantial tumour reclassification, with six grade II/III gliomas reclassified as GBM. Overlap of HGG-typical TACs and LGG-typical TACs was dramatically reduced when tumours were clustered on the basis of their methylation profile. SUVmax/BG values of GBM were higher than those of LGGs following both histological diagnosis and methylation-based diagnosis. The differences in TTP between GBMs and grade II/III gliomas were greater following methylation-based diagnosis than following histological diagnosis. Kinetic modeling showed that relative K1 and fractal dimension (FD) values significantly differed in histology- and methylation-based GBM and grade II/III glioma between those diagnosed histologically and those diagnosed by methylation analysis. Multivariate analysis revealed slightly greater diagnostic accuracy with methylation-based diagnosis. IDH-mutant gliomas and GBM subgroups tended to differ in their 18F-FET PET kinetics. CONCLUSION: The status of dynamic 18F-FET PET as a biologically and clinically relevant imaging modality is confirmed in the context of molecular glioma diagnosis.


Subject(s)
Brain Neoplasms/diagnostic imaging , DNA Methylation , Glioma/diagnostic imaging , Positron Emission Tomography Computed Tomography , Adult , Aged , Aged, 80 and over , Brain Neoplasms/metabolism , Female , Glioma/metabolism , Humans , Male , Middle Aged , Neoplasm Grading , Positron-Emission Tomography , Retrospective Studies , Tyrosine , Young Adult
10.
Lancet Oncol ; 18(5): 682-694, 2017 05.
Article in English | MEDLINE | ID: mdl-28314689

ABSTRACT

BACKGROUND: The WHO classification of brain tumours describes 15 subtypes of meningioma. Nine of these subtypes are allotted to WHO grade I, and three each to grade II and grade III. Grading is based solely on histology, with an absence of molecular markers. Although the existing classification and grading approach is of prognostic value, it harbours shortcomings such as ill-defined parameters for subtypes and grading criteria prone to arbitrary judgment. In this study, we aimed for a comprehensive characterisation of the entire molecular genetic landscape of meningioma to identify biologically and clinically relevant subgroups. METHODS: In this multicentre, retrospective analysis, we investigated genome-wide DNA methylation patterns of meningiomas from ten European academic neuro-oncology centres to identify distinct methylation classes of meningiomas. The methylation classes were further characterised by DNA copy number analysis, mutational profiling, and RNA sequencing. Methylation classes were analysed for progression-free survival outcomes by the Kaplan-Meier method. The DNA methylation-based and WHO classification schema were compared using the Brier prediction score, analysed in an independent cohort with WHO grading, progression-free survival, and disease-specific survival data available, collected at the Medical University Vienna (Vienna, Austria), assessing methylation patterns with an alternative methylation chip. FINDINGS: We retrospectively collected 497 meningiomas along with 309 samples of other extra-axial skull tumours that might histologically mimic meningioma variants. Unsupervised clustering of DNA methylation data clearly segregated all meningiomas from other skull tumours. We generated genome-wide DNA methylation profiles from all 497 meningioma samples. DNA methylation profiling distinguished six distinct clinically relevant methylation classes associated with typical mutational, cytogenetic, and gene expression patterns. Compared with WHO grading, classification by individual and combined methylation classes more accurately identifies patients at high risk of disease progression in tumours with WHO grade I histology, and patients at lower risk of recurrence among WHO grade II tumours (p=0·0096) from the Brier prediction test). We validated this finding in our independent cohort of 140 patients with meningioma. INTERPRETATION: DNA methylation-based meningioma classification captures clinically more homogenous groups and has a higher power for predicting tumour recurrence and prognosis than the WHO classification. The approach presented here is potentially very useful for stratifying meningioma patients to observation-only or adjuvant treatment groups. We consider methylation-based tumour classification highly relevant for the future diagnosis and treatment of meningioma. FUNDING: German Cancer Aid, Else Kröner-Fresenius Foundation, and DKFZ/Heidelberg Institute of Personalized Oncology/Precision Oncology Program.


Subject(s)
DNA Methylation , Meningeal Neoplasms/classification , Meningeal Neoplasms/genetics , Meningioma/classification , Meningioma/genetics , Neoplasm Recurrence, Local/genetics , DNA Copy Number Variations , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Disease Progression , Disease-Free Survival , Female , Genome , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Male , Meningeal Neoplasms/pathology , Meningioma/pathology , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Neurofibromin 2/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-akt/genetics , Retrospective Studies , Sequence Analysis, RNA , Smoothened Receptor/genetics , Survival Rate , Transcription Factors/genetics , Transcriptome , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics
11.
Home Health Care Serv Q ; 35(3-4): 172-181, 2016.
Article in English | MEDLINE | ID: mdl-27897466

ABSTRACT

Telemedicine holds promise in bridging the gap between homebound patients and high quality health care, but uptake of such technology remains limited. Qualitative interviews conducted with 17 homebound patients found two major barriers to telemedicine. First, participants who lack familiarity with technology are hesitant about telemedicine, as baseline use of technology in the home is limited, participants did not feel capable of learning, and the advantages of telemedicine were unclear. Second, homebound patients place a high value on in-office visits due to therapeutic benefit, face-to-face communication, and the social aspect of medical appointments.


Subject(s)
Homebound Persons/psychology , Perception , Technology/standards , Telemedicine/standards , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Qualitative Research , Technology/methods , Telemedicine/methods
12.
Res Nurs Health ; 37(4): 302-11, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24990824

ABSTRACT

Intimate partner violence (IPV) is a significant health issue faced by women veterans, but little is known about their preferences for IPV-related care. Five focus groups were conducted with 24 women Veterans Health Administration (VHA) patients with and without a lifetime history of IPV to understand their attitudes and preferences regarding IPV screening and responses within VHA. Women veterans wanted disclosure options, follow-up support, transparency in documentation, and VHA and community resources. They supported routine screening for IPV and articulated preferences for procedural aspects of screening. Women suggested that these procedures could be provided most effectively when delivered with sensitivity and connectedness. Findings can inform the development of IPV screening and response programs within VHA and other healthcare settings.


Subject(s)
Disclosure , Mass Screening/organization & administration , Spouse Abuse/diagnosis , Spouse Abuse/prevention & control , Veterans , Adult , Boston , Counseling , Female , Focus Groups , Humans , Interpersonal Relations , Mass Screening/psychology , Middle Aged , Patient Preference/psychology , Program Evaluation , Qualitative Research , United States , United States Department of Veterans Affairs
13.
J Allergy Clin Immunol Glob ; 2(1): 93-96, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37780102

ABSTRACT

Background: A key strategy to combat the public health crisis of antimicrobial resistance is to use appropriate antibiotics, which is difficult in patients with a penicillin allergy label. Objective: Our aim was to investigate racial and ethnic differences related to penicillin allergy labeling and referral to allergy/immunology in primary care. Methods: This was a retrospective study of Tufts Medical Center's Boston-based primary care patients in 2019. Univariable and multivariable logistic regression models were used to examine demographic associations with (1) penicillin allergy label and (2) allergist referral. Results: Of 21,918 primary care patients, 2,391 (11%) had a penicillin allergy label; of these, 249 (10%) had an allergist referral. In multivariable logistic regression models, older age (adjusted odds ratio [aOR] = 1.06 [95% CI = 1.04-1.09]) and female sex (aOR = 1.58 [95% CI = 1.44-1.74]) were associated with higher odds of penicillin allergy label carriage. Black race (aOR = 0.77 [95% CI = 0.69-0.87]) and Asian race (aOR = 0.47 [95% CI = 0.41-0.53]) were associated with lower odds of penicillin allergy label carriage. In multivariable regression, allergist referral was associated with female sex (aOR = 1.52 [95% CI = 1.10-2.10]) and Black race (aOR = 1.74 [95% CI = 1.25-2.45]). Of 93 patients (37%) who completed their allergy visit, 26 (28%) had received penicillin allergy evaluation or were scheduled to receive a penicillin allergy evaluation at a future visit. Conclusions: There were racial differences in penicillin allergy labeling and referral. Allergy referral for penicillin allergy assessment was rare. Larger studies are needed to assess penicillin allergy labeling and delabeling with an equity focus on optimizing patient health outcomes.

15.
BMC Palliat Care ; 11: 5, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22512923

ABSTRACT

BACKGROUND: Patients in sub-Saharan Africa commonly experience pain, which often is un-assessed and undertreated. One hindrance to routine pain assessment in these settings is the lack of a single-item pain rating scale validated for the particular context. The goal of this study was to examine the face validity and cultural acceptability of two single-item pain scales, the Numerical Rating Scale (NRS) and the Faces Pain Scale-Revised (FPS-R), in a population of patients on the medical, surgical, and pediatric wards of Moi Teaching and Referral Hospital in Kenya. METHODS: Swahili versions of the NRS and FPS-R were developed by standard translation and back-translation. Cognitive interviews were performed with 15 patients at Moi Teaching and Referral Hospital in Eldoret, Kenya. Interview transcripts were analyzed on a question-by-question basis to identify major themes revealed through the cognitive interviewing process and to uncover any significant problems participants encountered with understanding and using the pain scales. RESULTS: Cognitive interview analysis demonstrated that participants had good comprehension of both the NRS and the FPS-R and showed rational decision-making processes in choosing their responses. Participants felt that both scales were easy to use. The FPS-R was preferred almost unanimously to the NRS. CONCLUSIONS: The face validity and acceptability of the Swahili versions of the NRS and FPS-R has been demonstrated for use in Kenyan patients. The broader application of these scales should be evaluated and may benefit patients who currently suffer from pain.

17.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785614

ABSTRACT

Chaperones aid in protein folding and maintenance of protein integrity. In doing so, they have the unique ability to directly stabilize resistance-conferring amino acid substitutions in drug targets and to counter the stress imparted by these substitutions, thus supporting heritable antimicrobial resistance (AMR). We asked whether chaperones support AMR in Mycobacterium smegmatis, a saprophytic model of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). We show that DnaK associates with many drug targets and that DnaK associates more with AMR-conferring mutant RNA polymerase (RNAP) than with wild-type RNAP. In addition, frequency-of-resistance (FOR) and fitness studies reveal that the DnaK system of chaperones supports AMR in antimicrobial targets in mycobacteria, including RNAP and the ribosome. These findings highlight chaperones as potential targets for drugs to overcome AMR in mycobacteria, including M. tuberculosis, as well as in other pathogens.IMPORTANCE AMR is a global problem, especially for TB. Here, we show that mycobacterial chaperones support AMR in M. smegmatis, a nonpathogenic model of M. tuberculosis, the causative agent of TB. In particular, the mycobacterial DnaK system of chaperones supports AMR in the antimicrobial targets RNA polymerase and the ribosome. This is the first report showing a role for protein chaperones in mediating AMR in mycobacteria. Given the widespread role of protein chaperones in enabling genomic diversity, we anticipate that our findings can be extended to other microbes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Molecular Chaperones/metabolism , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Humans , Molecular Chaperones/genetics , Mutation , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Protein Binding , Tuberculosis/microbiology
18.
Microbiol Spectr ; 9(2): e0092821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34550010

ABSTRACT

Phosphopantetheinyl hydrolase, PptH (Rv2795c), is a recently discovered enzyme from Mycobacterium tuberculosis that removes 4'-phosphopantetheine (Ppt) from holo-carrier proteins (CPs) and thereby opposes the action of phosphopantetheinyl transferases (PPTases). PptH is the first structurally characterized enzyme of the phosphopantetheinyl hydrolase family. However, conditions for optimal activity of PptH have not been defined, and only one substrate has been identified. Here, we provide biochemical characterization of PptH and demonstrate that the enzyme hydrolyzes Ppt in vitro from more than one M. tuberculosis holo-CP as well as holo-CPs from other organisms. PptH provided the only detectable activity in mycobacterial lysates that dephosphopantetheinylated acyl carrier protein M (AcpM), suggesting that PptH is the main Ppt hydrolase in M. tuberculosis. We could not detect a role for PptH in coenzyme A (CoA) salvage, and PptH was not required for virulence of M. tuberculosis during infection of mice. It remains to be determined why mycobacteria conserve a broadly acting phosphohydrolase that removes the Ppt prosthetic group from essential CPs. We speculate that the enzyme is critical for aspects of the life cycle of M. tuberculosis that are not routinely modeled. IMPORTANCE Tuberculosis (TB), caused by Mycobacterium tuberculosis, was the leading cause of death from an infectious disease before COVID, yet the in vivo essentiality and function of many of the protein-encoding genes expressed by M. tuberculosis are not known. We biochemically characterize M. tuberculosis's phosphopantetheinyl hydrolase, PptH, a protein unique to mycobacteria that removes an essential posttranslational modification on proteins involved in synthesis of lipids important for the bacterium's cell wall and virulence. We demonstrate that the enzyme has broad substrate specificity, but it does not appear to have a role in coenzyme A (CoA) salvage or virulence in a mouse model of TB.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Pantetheine/analogs & derivatives , Phosphoric Diester Hydrolases/metabolism , Animals , Cell Wall/metabolism , Female , Humans , Lipids/biosynthesis , Mice , Mice, Inbred C57BL , Pantetheine/metabolism , Protein Processing, Post-Translational , Tuberculosis/pathology , Virulence/physiology
19.
J Med Chem ; 64(9): 6262-6272, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33949190

ABSTRACT

Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.


Subject(s)
Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Humans , Mycobacterium tuberculosis/drug effects , Peptides, Cyclic/chemistry , Structure-Activity Relationship
20.
Tuberculosis (Edinb) ; 115: 63-66, 2019 03.
Article in English | MEDLINE | ID: mdl-30948178

ABSTRACT

The Mycobacterium tuberculosis mec+-cysO-cysM gene cluster was shown to be part of a novel cysteine biosynthesis pathway in vitro, but little is known about its essentiality or role in M. tuberculosis physiology. In this study, we generate a knock out of the mec+-cysO-cysM gene cluster in M. tuberculosis and show that the gene cluster is not essential under a variety of conditions, suggesting redundancy in pathways for cysteine biosynthesis in M. tuberculosis. The cysteine biosynthesis gene cluster is essential for resistance for clofazimine, a peroxide-producing anti-leprosy drug. Therefore, although under most conditions the pathway is not essential, it likely has an important role in defense against oxidative stress in M. tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , Clofazimine/pharmacology , Cysteine/biosynthesis , Genes, Bacterial/genetics , Mycobacterium tuberculosis/drug effects , Biosynthetic Pathways/genetics , Cysteine/genetics , Drug Resistance, Bacterial/genetics , Gene Deletion , Leprostatic Agents/pharmacology , Microbial Sensitivity Tests , Multigene Family/drug effects , Mycobacterium tuberculosis/growth & development , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL