Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Development ; 150(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37526610

ABSTRACT

Drosophila is an important model for studying heart development and disease. Yet, single-cell transcriptomic data of its developing heart have not been performed. Here, we report single-cell profiling of the entire fly heart using ∼3000 Hand-GFP embryos collected at five consecutive developmental stages, ranging from bilateral migrating rows of cardiac progenitors to a fused heart tube. The data revealed six distinct cardiac cell types in the embryonic fly heart: cardioblasts, both Svp+ and Tin+ subtypes; and five types of pericardial cell (PC) that can be distinguished by four key transcription factors (Eve, Odd, Ct and Tin) and include the newly described end of the line PC. Notably, the embryonic fly heart combines transcriptional signatures of the mammalian first and second heart fields. Using unique markers for each heart cell type, we defined their number and location during heart development to build a comprehensive 3D cell map. These data provide a resource to track the expression of any gene in the developing fly heart, which can serve as a reference to study genetic perturbations and cardiac diseases.


Subject(s)
Drosophila melanogaster , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Heart/embryology , Single-Cell Gene Expression Analysis , Lymph Nodes/cytology , Lymph Nodes/embryology , Embryo, Nonmammalian , Embryonic Development , Biomarkers , Organogenesis
2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139143

ABSTRACT

Highly evolutionarily conserved multiprotein complexes termed Complex of Proteins Associated with Set1 (COMPASS) are required for histone 3 lysine 4 (H3K4) methylation. Drosophila Set1, Trx, and Trr form the core subunits of these complexes. We show that flies deficient in any of these three subunits demonstrated high lethality at eclosion (emergence of adult flies from their pupal cases) and significantly shortened lifespans for the adults that did emerge. Silencing Set1, trx, or trr in the heart led to a reduction in H3K4 monomethylation (H3K4me1) and dimethylation (H3K4me2), reflecting their distinct roles in H3K4 methylation. Furthermore, we studied the gene expression patterns regulated by Set1, Trx, and Trr. Each of the COMPASS core subunits controls the methylation of different sets of genes, with many metabolic pathways active early in development and throughout, while muscle and heart differentiation processes were methylated during later stages of development. Taken together, our findings demonstrate the roles of COMPASS series complex core subunits Set1, Trx, and Trr in regulating histone methylation during heart development and, given their implication in congenital heart diseases, inform research on heart disease.


Subject(s)
Drosophila Proteins , Epigenesis, Genetic , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Heart/growth & development
3.
Sensors (Basel) ; 21(2)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435247

ABSTRACT

In the traditional wireless sensor networks (WSNs) localization algorithm based on the Internet of Things (IoT), the distance vector hop (DV-Hop) localization algorithm has the disadvantages of large deviation and low accuracy in three-dimensional (3D) space. Based on the 3DDV-Hop algorithm and combined with the idea of A* algorithm, this paper proposes a wireless sensor network node location algorithm (MA*-3DDV-Hop) that integrates the improved A* algorithm and the 3DDV-Hop algorithm. In MA*-3DDV-Hop, firstly, the hop-count value of nodes is optimized and the error of average distance per hop is corrected. Then, the multi-objective optimization non dominated sorting genetic algorithm (NSGA-II) is adopted to optimize the coordinates locally. After selection, crossover, mutation, the Pareto optimal solution is obtained, which overcomes the problems of premature convergence and poor convergence of existing algorithms. Moreover, it reduces the error of coordinate calculation and raises the localization accuracy of wireless sensor network nodes. For three different multi-peak random scenes, simulation results show that MA*-3DDV-Hop algorithm has better robustness and higher localization accuracy than the 3DDV-Hop, PSO-3DDV-Hop, GA-3DDV-Hop, and N2-3DDV-Hop.

4.
Nanotechnology ; 31(22): 225701, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32167934

ABSTRACT

In this work, we reported the tailored design of highly efficient Fe3O4-Au magnetic nanocomposite (MNP) catalysts. Fe3O4 nanocrystals with three different morphologies have been developed with engineered amounts of urea, and the plausible mechanism has been proposed. Then by controlling the amount of Au seeds, Fe3O4-Au MNPs with different morphologies and tunable Au deposition have been realized. Characterizations including x-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectra, and elemental mapping are implemented to unveil the structural and physical characteristics of the successfully developed Fe3O4-Au MNPs with different morphologies. The catalytic ability of Fe3O4-Au MNPs with different morphologies have been compared by applying them to degrading RhB and 4-NP, meanwhile the correlation between the amount of Au seeds and the turnover frequency as well as the catalytic ability of Fe3O4-Au MNPs is investigated systematically. We found that the flower-like Fe3O4-Au MNPs with 20 ml Au seeds added achieved the best degradation efficiency of 96.7%, and their catalytic ability were almost unchanged after recycling. Out study sheds the light into the tailored design of highly efficient and recyclable catalysts for RhB and 4-NP.

5.
Int J Mol Sci ; 19(8)2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30049941

ABSTRACT

Brassica plants exhibit both high biomass productivity and high rates of heavy metal absorption. Metallothionein (MT) proteins are low molecular weight, cysteine-rich, metal-binding proteins that play crucial roles in protecting plants from heavy metal toxicity. However, to date, MT proteins have not been systematically characterized in Brassica. In this study, we identified 60 MTs from Arabidopsis thaliana and five Brassica species. All the MT family genes from Brassica are closely related to Arabidopsis MTs, encoding putative proteins that share similar functions within the same clades. Genome mapping analysis revealed high levels of synteny throughout the genome due to whole genome duplication and segmental duplication events. We analyzed the expression levels of 16 Brassica napus MTs (BnaMTs) by RNA-sequencing and real-time RT-PCR (RT-qPCR) analysis in plants under As3+ stress. These genes exhibited different expression patterns in various tissues. Our results suggest that BnaMT3C plays a key role in the response to As3+ stress in B. napus. This study provides insight into the phylogeny, origin, and evolution of MT family members in Brassica, laying the foundation for further studies of the roles of MT proteins in these important crops.


Subject(s)
Arsenic/metabolism , Brassica napus/genetics , Gene Expression Regulation, Plant , Metallothionein/genetics , Plant Proteins/genetics , Amino Acid Sequence , Brassica napus/chemistry , Brassica napus/metabolism , Genome, Plant , Metallothionein/chemistry , Metallothionein/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Stress, Physiological , Transcriptome
6.
Nanotechnology ; 27(48): 485604, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27811408

ABSTRACT

Vertically aligned, highly ordered, large area arrays of nanostructures are important building blocks for multifunctional devices. Here, ZnO nanorod arrays are selectively synthesized on Si substrates by a solution method within patterns created by nanoimprint lithography. The growth modes of two dimensional nucleation-driven wedding cakes and screw dislocation-driven spirals are inferred to determine the top end morphologies of the nanorods. Sub-bandgap photoluminescence of the nanorods is greatly enhanced by the manipulation of the hydrogen donors via a post-growth thermal treatment. Lasing behavior is facilitated in the nanorods with faceted top ends formed from wedding cakes growth mode. This work demonstrates the control of morphologies of oxide nanostructures in a large scale and the optimization of the optical performance.

7.
Proc Natl Acad Sci U S A ; 110(8): 2846-51, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23386722

ABSTRACT

Mitochondria in many types of cells are dynamically interconnected through constant fusion and fission, allowing for exchange of mitochondrial contents and repair of damaged mitochondria. However, constrained by the myofibril lattice, the ∼6,000 mitochondria in the adult mammalian cardiomyocyte display little motility, and it is unclear how, if at all, they communicate with each other. By means of target-expressing photoactivatable green fluorescent protein (PAGFP) in the mitochondrial matrix or on the outer mitochondrial membrane, we demonstrated that the local PAGFP signal propagated over the entire population of mitochondria in cardiomyocytes on a time scale of ∼10 h. Two elemental steps of intermitochondrial communications were manifested as either a sudden PAGFP transfer between a pair of adjacent mitochondria (i.e., "kissing") or a dynamic nanotubular tunnel (i.e., "nanotunneling") between nonadjacent mitochondria. The average content transfer index (fractional exchange) was around 0.5; the rate of kissing was 1‰ s(-1) per mitochondrial pair, and that of nanotunneling was about 14 times smaller. Electron microscopy revealed extensive intimate contacts between adjacent mitochondria and elongated nanotubular protrusions, providing a structural basis for the kissing and nanotunneling, respectively. We propose that, through kissing and nanotunneling, the otherwise static mitochondria in a cardiomyocyte form one dynamically continuous network to share content and transfer signals.


Subject(s)
Mitochondria, Heart/physiology , Animals , Green Fluorescent Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Rats
8.
J Biol Chem ; 287(28): 23615-25, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22619176

ABSTRACT

In the heart, autophagy has been implicated in cardioprotection and ischemia-reperfusion tolerance, and the dysregulation of autophagy is associated with the development of heart failure. Mitochondrial dynamic proteins are profoundly involved in autophagic processes, especially the initiation and formation of autophagosomes, but it is not clear whether they play any role in cardiac autophagy. We previously reported that mitofusin 2 (MFN2), a mitochondrial outer membrane protein, serves as a major determinant of cardiomyocyte apoptosis mediated by oxidative stress. Here, we reveal a novel and essential role of MFN2 in mediating cardiac autophagy. We found that specific deletion of MFN2 in cardiomyocytes caused extensive accumulation of autophagosomes. In particular, the fusion of autophagosomes with lysosomes, a critical step in autophagic degradation, was markedly retarded without altering the formation of autophagosomes and lysosomes in response to ischemia-reperfusion stress. Importantly, MFN2 co-immunoprecipitated with RAB7 in the heart, and starvation further increased it. Knockdown of MFN2 by shRNA prevented, whereas re-expression of MFN2 restored, the autophagosome-lysosome fusion in neonatal cardiomyocytes. Hearts from cardiac-specific MFN2 knock-out mice had abnormal mitochondrial and cellular metabolism and were vulnerable to ischemia-reperfusion challenge. Our study defined a novel and essential role of MFN2 in the cardiac autophagic process by mediating the maturation of autophagy at the phase of autophagosome-lysosome fusion; deficiency of MFN2 caused multiple molecular and functional defects that undermined cardiac reserve and gradually led to cardiac vulnerability and dysfunction.


Subject(s)
Autophagy/physiology , GTP Phosphohydrolases/deficiency , Membrane Fusion/physiology , Myocytes, Cardiac/physiology , Animals , Animals, Newborn , Blotting, Western , Cells, Cultured , DNA, Mitochondrial/genetics , Echocardiography , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Heart/physiopathology , Immunoprecipitation , Lysosomes/metabolism , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Myocytes, Cardiac/enzymology , Phagosomes/metabolism , Protein Binding , RNA Interference , Reperfusion Injury/physiopathology , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
9.
J Cardiovasc Dev Dis ; 10(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37504562

ABSTRACT

Methyltransferases regulate transcriptome dynamics during development and aging, as well as in disease. Various methyltransferases have been linked to heart disease, through disrupted expression and activity, and genetic variants associated with congenital heart disease. However, in vivo functional data for many of the methyltransferases in the context of the heart are limited. Here, we used the Drosophila model system to investigate different histone 3 lysine 36 (H3K36) methyltransferases for their role in heart development. The data show that Drosophila Ash1 is the functional homolog of human ASH1L in the heart. Both Ash1 and Set2 H3K36 methyltransferases are required for heart structure and function during development. Furthermore, Ash1-mediated H3K36 methylation (H3K36me2) is essential for healthy heart function, which depends on both Ash1-complex components, Caf1-55 and MRG15, together. These findings provide in vivo functional data for Ash1 and its complex, and Set2, in the context of H3K36 methylation in the heart, and support a role for their mammalian homologs, ASH1L with RBBP4 and MORF4L1, and SETD2, during heart development and disease.

10.
IEEE Trans Image Process ; 32: 4773-4784, 2023.
Article in English | MEDLINE | ID: mdl-37603485

ABSTRACT

Graph convolutional networks have been widely applied in skeleton-based gait recognition. A key challenge in this task is to distinguish the individual walking styles of different subjects across various views. Existing state-of-the-art methods employ uniform convolutions to extract features from diverse sequences and ignore the effects of viewpoint changes. To overcome these limitations, we propose a condition-adaptive graph (CAG) convolution network that can dynamically adapt to the specific attributes of each skeleton sequence and the corresponding view angle. In contrast to using fixed weights for all joints and sequences, we introduce a joint-specific filter learning (JSFL) module in the CAG method, which produces sequence-adaptive filters at the joint level. The adaptive filters capture fine-grained patterns that are unique to each joint, enabling the extraction of diverse spatial-temporal information about body parts. Additionally, we design a view-adaptive topology learning (VATL) module that generates adaptive graph topologies. These graph topologies are used to correlate the joints adaptively according to the specific view conditions. Thus, CAG can simultaneously adjust to various walking styles and viewpoints. Experiments on the two most widely used datasets (i.e., CASIA-B and OU-MVLP) show that CAG surpasses all previous skeleton-based methods. Moreover, the recognition performance can be enhanced by simply combining CAG with appearance-based methods, demonstrating the ability of CAG to provide useful complementary information.


Subject(s)
Gait , Skeleton , Humans , Walking , Learning
11.
Sci Rep ; 12(1): 4532, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296790

ABSTRACT

Al-alloy/carbon fibre reinforced polymer (CFRP) joint systems offer exceptionally lightweight, superior fatigue behaviour and impact resistance for aerospace applications. Nevertheless, the galvanic corrosion at the joint interfaces accelerates the adhesive failure and strength damage. In this work, oxidation of Al 7075 alloy was studied by employing plasma electrolytic oxidation (PEO) and thin film sulphuric acid anodizing (TFSAA) methods, addressing their galvanic corrosion (GC) protection performance in contact with CFRP. Structural and electrochemical characterisations were carried out in tandem with varied oxidation process parameters, revealing that high voltage PEO resulted in crystallized compact ceramic coating and thus improved GC protection. A decrease in the GC current by ~ 90% has been achieved by using the PEO coating at 700 V compared with the ~ 12% current reduction of commercial TFSAA coating. Further microstructure studies revealed that the improved GC protection of the crystallized PEO coating was realized by suppressing the initiation and propagation of localized pitting due to the improved electrical isolation between the Al-alloy/CFRP interfaces. A high voltage PEO process provides sufficient energy to produce uniform and crystalline ceramic coating consisting of Al2O3 and mullite, which give rise to improved corrosion protection.

12.
Sci Total Environ ; 806(Pt 1): 150502, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34844319

ABSTRACT

High ammonia (NH3) and nitrogen oxide (NOx) emissions are related to serious air pollution in urban areas and the negative impacts of excessive reactive nitrogen (N) deposition on many ecosystems. However, whether there is a relationship between N deposition rates and their sources with urbanization or not remains unclear in many areas. Here, we investigated the deposition rates of ammonium (NH4+), nitrate (NO3-), dissolved organic N, and water-insoluble particular N from July 2017 to June 2018 at two urban and two suburban sites in the Yangtze River Delta (YRD). The δ15N values of precipitation NH4+ and NO3- were measured, and major sources were analyzed using a Bayesian isotope mixing model. Wet N deposition rates were higher in Yangzhou (developing city, 20.3-22.7 kg N ha-1 yr-1) than those in Nanjing (developed city, 19.4-20.5 kg N ha-1 yr-1), and were higher at urban sites (20.4-22.5 kg N ha-1 yr-1) than those at suburban sites (18.7-20.3 kg N ha-1 yr-1). δ15N values of precipitation NH4+ increased with an increase in precipitation pH because ambient acidity affects the equilibrium isotope fractionation between NH3 and NH4+ and wet scavenging coefficients of NH3 and particulate NH4+. For NH4+, combustion-related NH3 sources (62%-65% with 5.5-6.4 kg N ha-1 yr-1, including coal combustion, vehicle exhaust, and biomass burning) contributed more than volatilization NH3 sources (35%-38% with 2.9-3.9 kg N ha-1 yr-1, including fertilizer application and waste volatilization). For NO3-, non-fossil fuel NOx sources (50%-63% with 3.4-4.1 kg N ha-1 yr-1, including biomass burning and microbial N cycle) were comparable to fossil fuel NOx sources (37%-50% with 2.4-3.4 kg N ha-1 yr-1, including coal combustion and vehicle exhaust). This study evidenced high N deposition rates and the importance of combustion-related NH3 emissions and non-fossil fuel NOx emissions in city areas of the YRD.


Subject(s)
Air Pollutants , Nitrogen , Air Pollutants/analysis , Bayes Theorem , China , Cities , Ecosystem , Environmental Monitoring , Nitrogen/analysis , Rivers , Seasons
13.
Dis Model Mech ; 15(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34580712

ABSTRACT

Oncogenic Ras mutations are highly prevalent in hematopoietic malignancies. However, it is difficult to directly target oncogenic RAS proteins for therapeutic intervention. We have developed a Drosophila acute myeloid leukemia model induced by human KRASG12V, which exhibits a dramatic increase in myeloid-like leukemia cells. We performed both genetic and drug screens using this model. The genetic screen identified 24 candidate genes able to attenuate the oncogenic RAS-induced phenotype, including two key hypoxia pathway genes HIF1A and ARNT (HIF1B). The drug screen revealed that echinomycin, an inhibitor of HIF1A, can effectively attenuate the leukemia phenotype caused by KRASG12V. Furthermore, we showed that echinomycin treatment can effectively suppress oncogenic RAS-driven leukemia cell proliferation, using both human leukemia cell lines and a mouse xenograft model. These data suggest that inhibiting the hypoxia pathway could be an effective treatment approach and that echinomycin is a promising targeted drug to attenuate oncogenic RAS-induced cancer phenotypes. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Echinomycin , Leukemia, Myeloid, Acute , Animals , Echinomycin/pharmacology , Echinomycin/therapeutic use , Genes, ras , Humans , Hypoxia/drug therapy , Leukemia, Myeloid, Acute/pathology , Mice , Phenotype
14.
Commun Biol ; 5(1): 1039, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180527

ABSTRACT

SARS-CoV-2 infection causes COVID-19, a severe acute respiratory disease associated with cardiovascular complications including long-term outcomes. The presence of virus in cardiac tissue of patients with COVID-19 suggests this is a direct, rather than secondary, effect of infection. Here, by expressing individual SARS-CoV-2 proteins in the Drosophila heart, we demonstrate interaction of virus Nsp6 with host proteins of the MGA/MAX complex (MGA, PCGF6 and TFDP1). Complementing transcriptomic data from the fly heart reveal that this interaction blocks the antagonistic MGA/MAX complex, which shifts the balance towards MYC/MAX and activates glycolysis-with similar findings in mouse cardiomyocytes. Further, the Nsp6-induced glycolysis disrupts cardiac mitochondrial function, known to increase reactive oxygen species (ROS) in heart failure; this could explain COVID-19-associated cardiac pathology. Inhibiting the glycolysis pathway by 2-deoxy-D-glucose (2DG) treatment attenuates the Nsp6-induced cardiac phenotype in flies and mice. These findings point to glycolysis as a potential pharmacological target for treating COVID-19-associated heart failure.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , COVID-19 , Drosophila Proteins/metabolism , Heart Failure , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Deoxyglucose/metabolism , Drosophila/metabolism , Glycolysis , Heart Failure/metabolism , Mice , Myocytes, Cardiac/metabolism , Polycomb Repressive Complex 1/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2
15.
Phys Rev Lett ; 107(7): 074503, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21902400

ABSTRACT

It is now accepted that the physical forces in ultrasonic cleaning are due to strongly pulsating bubbles driven by the sound field. Here we have a detailed look at bubble induced cleaning flow by analyzing the transport of an individual particle near an expanding and collapsing bubble. The induced particulate transport is compared with a force balance model. We find two important properties of the flow which explain why bubbles are effectively cleaning: During bubble expansion a strong shear layer loosens the particle from the surface through particle spinning and secondly an unsteady boundary layer generates an attractive force, thus collecting the contamination in the bubble's close proximity.

16.
Nano Lett ; 10(10): 3846-51, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20804216

ABSTRACT

The flow induced by a single laser-induced cavitation bubble is used to manipulate individual Co nanowires. The short-lived (<20 µs) bubble with a maximum size of 45 µm is created in an aqueous solution with a laser pulse. Translation, rotation, and radial motion of the nanowire can be selectively achieved by varying the initial distance and orientation of the bubble with respect to the nanowire. Depending on the initial distance, the nanowire can be either pushed away or pulled toward the laser focus. No translation is observed for a distance further than approximately 60 µm, while at closer distance, the nanowire can be bent as a result of the fast flow induced during the bubble collapse. Studying the dynamics of the shape recovery allows an estimation of the Young's modulus of the nanowire. The low measured Young's modulus (in a range from 9.6 to 13.0 GPa) of the Co nanowire is attributed to a softening effect due to structural defects and surface oxidation layer. Our study suggests that this bubble-based technique allows selectively transporting, orienting, and probing individual nanowires and may be exploited for constructing functional nanodevices.

17.
Cancers (Basel) ; 13(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572152

ABSTRACT

MYC and HIF1α are among the most important oncoproteins whose pharmacologic inhibition has been challenging for the diverse mechanisms driving their abnormal expression and because of the challenge in blocking protein-DNA interactions. Surprisingly, we found that MYC and HIF1α proteins in echinomycin-treated cells were degraded through proteasome dependent pathways, respectively by the ß-TrCP- or VHL-dependent mechanisms. The degradation is induced in a variety of cancer types, including those with mutations in the p53 tumor and LKB tumor suppressors and the KRAS oncogene. Consistent with inhibition of MYC and HIF1α, administration of echinomycin inhibited growth of lung adenocarcinoma xenograft and a syngeneic lymphoma model in mice. Furthermore, echinomycin efficiently induced regression of syngeneic mouse lymphoma driven by MYC over-expression. Our data demonstrated a new mechanism by which echinomycin simultaneously targets MYC and HIF1α for degradation to inhibit growth of lung cancer and lymphoma. Given the broad impact of ß-TrCP or VHL in stability of oncogenic proteins, echinomycin may emerge as a non-PROTAC (proteolysis targeting chimera) degrader of oncogenic proteins.

18.
J Genet Genomics ; 47(4): 175-186, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32487456

ABSTRACT

Drosophila has been extensively used to model the human blood-immune system, as both systems share many developmental and immune response mechanisms. However, while many human blood cell types have been identified, only three were found in flies: plasmatocytes, crystal cells and lamellocytes. To better understand the complexity of fly blood system, we used single-cell RNA sequencing technology to generate comprehensive gene expression profiles for Drosophila circulating blood cells. In addition to the known cell types, we identified two new Drosophila blood cell types: thanacytes and primocytes. Thanacytes, which express many stimulus response genes, are involved in distinct responses to different types of bacteria. Primocytes, which express cell fate commitment and signaling genes, appear to be involved in keeping stem cells in the circulating blood. Furthermore, our data revealed four novel plasmatocyte subtypes (Ppn+, CAH7+, Lsp+ and reservoir plasmatocytes), each with unique molecular identities and distinct predicted functions. We also identified cross-species markers from Drosophila hemocytes to human blood cells. Our analysis unveiled a more complex Drosophila blood system and broadened the scope of using Drosophila to model human blood system in development and disease.


Subject(s)
Cell Lineage/genetics , Drosophila melanogaster/cytology , Hemocytes/cytology , Immunity/genetics , Single-Cell Analysis , Animals , Cell Differentiation/genetics , Cell Lineage/immunology , Drosophila melanogaster/immunology , Hemocytes/immunology , Humans , Immunity/immunology , Larva/cytology , Larva/immunology , RNA-Seq/methods , Signal Transduction/genetics , Transcriptome/genetics
19.
ACS Sens ; 5(8): 2620-2627, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32786385

ABSTRACT

The newly emerged gas sensing detection of 3-hydroxy-2-butanone (3H-2B) biomarker is deemed as an effective avenue to indirectly monitor Listeria monocytogenes (LM). However, 3H-2B sensing materials requiring critically high sensitivity and selectivity, and ppb-level detection limit, remain challenging. Here, we report the advanced gas sensors built with bismuth vanadate microdecahedron (BiVO4 MDCD) {010} facets selectively decorated with Pd nanoparticles (Pd NPs, Pd-{010}BiVO4 MDCDs) for boosted detection of the 3H-2B biomarker. Meanwhile, BiVO4 MDCDs with overall facets are randomly deposited with Pd NPs (Pd-BiVO4 MDCDs). Comparatively, Pd-{010}BiVO4 MDCD sensors show 1 order of magnitude higher response toward the 3H-2B biomarker at 200 °C. Further, Pd-{010}BiVO4 MDCD sensors enable to detect as low as 0.2 ppm 3H-2B and show best selectivity and stability, and fastest response and recovery. Density functional theory calculations reveal a lower adsorption energy of 3H-2B onto Pd-{010}BiVO4 MDCDs than those of pristine and Pd-BiVO4 MDCDs. The extraordinary Pd-{010}BiVO4 sensing performance is ascribed to the Pd NP-assisted synergetic effect of the preferential adsorption of 3H-2B target molecules, accumulated sensing agent of ionic oxygen species, and concentrated catalysts on the {010} facets. This strategy offers rapid and noninvasive detection of LMs and is thus of great potential in the upcoming Internet of Things.


Subject(s)
Acetoin , Nanoparticles , Biomarkers , Catalysis
20.
Front Plant Sci ; 9: 1872, 2018.
Article in English | MEDLINE | ID: mdl-30662447

ABSTRACT

Brassica napus L. is a widely cultivated oil crop and provides important resources of edible vegetable oil, and its quality is determined by fatty acid composition and content. To explain the genetic basis and identify more minor loci for fatty acid content, the multi-locus random-SNP-effect mixed linear model (mrMLM) was used to identify genomic regions associated with fatty acid content in a genetically diverse population of 435 rapeseed accessions, including 77 winter-type, 55 spring-type, and 303 semi-winter-type accessions grown in different environments. A total of 149 quantitative trait nucleotides (QTNs) were found to be associated with fatty acid content and composition, including 34 QTNs that overlapped with the previously reported loci, and 115 novel QTNs. Of these, 35 novel QTNs, located on chromosome A01, A02, A03, A05, A06, A09, A10, and C02, respectively, were repeatedly detected across different environments. Subsequently, we annotated 95 putative candidate genes by BlastP analysis using sequences from Arabidopsis thaliana homologs of the identified regions. The candidate genes included 34 environmentally-insensitive genes (e.g., CER4, DGK2, KCS17, KCS18, MYB4, and TT16) and 61 environment-sensitive genes (e.g., FAB1, FAD6, FAD7, KCR1, KCS9, KCS12, and TT1) as well as genes invloved in the fatty acid biosynthesis. Among these, BnaA08g08280D and BnaC03g60080D differed in genomic sequence between the high- and low-oleic acid lines, and might thus be the novel alleles regulating oleic acid content. Furthermore, RT-qPCR analysis of these genes showed differential expression levels during seed development. Our results highlight the practical and scientific value of mrMLM or QTN detection and the accuracy of linking specific QTNs to fatty acid content, and suggest a useful strategy to improve the fatty acid content of B. napus seeds by molecular marker-assisted breeding.

SELECTION OF CITATIONS
SEARCH DETAIL