Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Prod Rep ; 41(9): 1403-1440, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-38888170

ABSTRACT

Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.


Subject(s)
Amino Acids , Glycopeptides , Glycoproteins , Glycoproteins/chemical synthesis , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycopeptides/chemical synthesis , Glycopeptides/chemistry , Glycosylation , Amino Acids/chemistry , Amino Acids/chemical synthesis , Animals
2.
Bioconjug Chem ; 35(2): 164-173, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38113481

ABSTRACT

Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qß (mQß), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQß-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQß-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQß-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.


Subject(s)
Analgesics, Opioid , Heroin , Mice , Animals , Analgesics, Opioid/pharmacology , Heroin/chemistry , Heroin/pharmacology , Morphine , Morphine Derivatives , Immunoglobulin G
3.
Haematologica ; 109(4): 1053-1068, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37794799

ABSTRACT

6-mercaptopurine (6-MP) serves as the backbone in the maintenance regimens of acute lymphoblastic leukemia (ALL). We aimed to evaluate the influence of NUDT15 gene polymorphism on the risk of myelosupression, hepatotoxicity and interruption of 6-MP, as well as treatment efficacy and dose of 6-MP in ALL patients. A total of 24 studies with 3,374 patients were included in this meta-analysis. We found 9-fold higher risk of 6-MP induced leukopenia (odds ratio [OR] =9.00, 95% confidence interval [CI]: 3.73-21.74) and 2.5-fold higher risk of 6-MP-induced neutropenia (OR=2.52, 95% CI: 1.72-3.69) for NUDT15 c.415C>T variant carriers in the dominant model. Moreover, we found that the dose intensity of 6-MP in ALL patients with one NUDT15 c.415C>T variant alleles (CT) was 19% less than that in wild-type patients (CC) (mean differences: 19.43%, 95% CI: -25.36 to -13.51). The tolerable dose intensity of 6-MP in NUDT15 c.415C>T homozygote variant (TT) and heterozygote variant (CT) carriers was 49% and 15% less than that in wild-type patients, respectively. The NUDT15 c.415C>T variant group (CT+TT) had seven times (OR=6.98, 95% CI: 2.83-17.22) higher risk of developing 6-MP intolerance than the CC group. However, NUDT15 c.415C>T polymorphism did not appear significantly associated with hepatotoxicity, treatment interruption or relapse incidence. We concluded that NUDT15 c.415C>T was a good predictor for 6-MP-induced myelosuppression in ALL patients. The dose intensity of 6-MP in ALL patients with NUDT15 c.415C>T variants was significantly lower than that in wild-type patients. This research provided a basis for further investigation into relations between NUDT15 gene and adverse reaction, treatment efficacy and dose intensity of 6-MP.


Subject(s)
Chemical and Drug Induced Liver Injury , Neutropenia , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mercaptopurine/adverse effects , Pyrophosphatases/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Polymorphism, Genetic , Neutropenia/genetics , Treatment Outcome , Chemical and Drug Induced Liver Injury/drug therapy
4.
Semin Immunol ; 47: 101390, 2020 02.
Article in English | MEDLINE | ID: mdl-31982247

ABSTRACT

Tumor associated carbohydrate antigens (TACAs) are a class of attractive antigens for the development of anti-cancer immunotherapy. Besides monoclonal antibodies and vaccines, chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs) targeting TACA are exciting directions to harness the power of the immune system to fight cancer. In this review, we focus on two TACAs, i.e., the GD2 ganglioside and the mucin-1 (MUC1) protein. The latest advances in CAR T cells and bispecific antibodies targeting these two antigens are presented. The roles of co-stimulatory molecules, structures of the sequences for antigen binding, methods for CAR and antibody construction, as well as strategies to enhance solid tumor penetration and reduce T cell exhaustion and death are discussed. Furthermore, approaches to reduce "on target, off tumor" side effects are introduced. With further development, CAR T cells and BsAbs targeting GD2 and MUC1 can become powerful agents to effectively treat solid tumor.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/immunology , Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Antibodies, Bispecific/metabolism , Epitopes/genetics , Epitopes/immunology , Gangliosides/antagonists & inhibitors , Gangliosides/chemistry , Gangliosides/immunology , Humans , Mucin-1/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/chemistry , Receptors, Chimeric Antigen/genetics
5.
Angew Chem Int Ed Engl ; 63(34): e202405671, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38781001

ABSTRACT

Proteoglycans (PGs), consisting of glycosaminoglycans (GAGs) linked with the core protein through a tetrasaccharide linkage region, play roles in many important biological events. The chemical synthesis of PG glycopeptides is extremely challenging. In this work, the enzymes required for synthesis of chondroitin sulfate (CS) PG (CSPG) have been expressed and the suitable sequence of enzymatic reactions has been established. To expedite CSPG synthesis, the peptide acceptor was immobilized on solid phase and the glycan units were directly installed enzymatically onto the peptide. Subsequent enzymatic chain elongation and sulfation led to the successful synthesis of CSPG glycopeptides. The CS dodecasaccharide glycopeptide was the longest homogeneous CS glycopeptide synthesized to date. The enzymatic synthesis was much more efficient than the chemical synthesis of the corresponding CS glycopeptides, which could reduce the total number of synthetic steps by 80 %. The structures of the CS glycopeptides were confirmed by mass spectrometry analysis and NMR studies. In addition, the interactions between the CS glycopeptides and cathepsin G were studied. The sulfation of glycan chain was found to be important for binding with cathepsin G. This efficient chemoenzymatic strategy opens new avenues to investigate the structures and functions of PGs.


Subject(s)
Chondroitin Sulfates , Glycopeptides , Glycopeptides/chemistry , Glycopeptides/chemical synthesis , Glycopeptides/metabolism , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/chemical synthesis , Solid-Phase Synthesis Techniques , Proteoglycans/chemistry
6.
J Biol Chem ; 298(10): 102468, 2022 10.
Article in English | MEDLINE | ID: mdl-36087840

ABSTRACT

The immune system produces a diverse collection of antiglycan antibodies that are critical for host defense. At present, however, we know very little about the binding properties, origins, and sequences of these antibodies because of a lack of access to a variety of defined individual antibodies. To address this challenge, we used a glycan microarray with over 800 different components to screen a panel of 516 human monoclonal antibodies that had been randomly cloned from different B-cell subsets originating from healthy human subjects. We obtained 26 antiglycan antibodies, most of which bound microbial carbohydrates. The majority of the antiglycan antibodies identified in the screen displayed selective binding for specific glycan motifs on our array and lacked polyreactivity. We found that antiglycan antibodies were about twice as likely than expected to originate from IgG+ memory B cells, whereas none were isolated from naïve, early emigrant, or immature B cells. Therefore, our results indicate that certain B-cell subsets in our panel are enriched in antiglycan antibodies, and IgG+ memory B cells may be a promising source of such antibodies. Furthermore, some of the newly identified antibodies bound glycans for which there are no reported monoclonal antibodies available, and these may be useful as research tools, diagnostics, or therapeutic agents. Overall, the results provide insight into the types and properties of antiglycan antibodies produced by the human immune system and a framework for the identification of novel antiglycan antibodies in the future.


Subject(s)
Antibodies, Monoclonal , Polysaccharides , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Carbohydrates , Immunoglobulin G/immunology , Microarray Analysis , Polysaccharides/metabolism , Memory B Cells/immunology
7.
Chemistry ; 29(2): e202202083, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36424188

ABSTRACT

Phosphatidylinositol phosphate kinases (PIPKs) produce lipid signaling molecules and have been attracting increasing attention as drug targets for cancer, neurodegenerative diseases, and viral infection. Given the potential cross-inhibition of kinases and other ATP-utilizing enzymes by ATP-competitive inhibitors, targeting the unique lipid substrate binding site represents a superior strategy for PIPK inhibition. Here, by taking advantage of the nearly identical stereochemistry between myo-inositol and D-galactose, we designed and synthesized a panel of D-galactosyl lysophospholipids, one of which was found to be a selective substrate of phosphatidylinositol 4-phosphate 5-kinase. Derivatization of this compound led to the discovery of a human PIKfyve inhibitor with an apparent IC50 of 6.2 µM, which significantly potentiated the inhibitory effect of Apilimod, an ATP-competitive PIKfyve inhibitor under clinical trials against SARS-CoV-2 infection and amyotrophic lateral sclerosis. Our results provide the proof of concept that D-galactose-based phosphoinositide mimetics can be developed into artificial substrates and new inhibitors of PIPKs.


Subject(s)
COVID-19 , Phosphates , Humans , Galactose , Lysophospholipids , Phosphatidylinositol Phosphates , Phosphatidylinositols/metabolism , SARS-CoV-2/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism
8.
Sensors (Basel) ; 23(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37420732

ABSTRACT

Dense video caption is a task that aims to help computers analyze the content of a video by generating abstract captions for a sequence of video frames. However, most of the existing methods only use visual features in the video and ignore the audio features that are also essential for understanding the video. In this paper, we propose a fusion model that combines the Transformer framework to integrate both visual and audio features in the video for captioning. We use multi-head attention to deal with the variations in sequence lengths between the models involved in our approach. We also introduce a Common Pool to store the generated features and align them with the time steps, thus filtering the information and eliminating redundancy based on the confidence scores. Moreover, we use LSTM as a decoder to generate the description sentences, which reduces the memory size of the entire network. Experiments show that our method is competitive on the ActivityNet Captions dataset.

9.
Angew Chem Int Ed Engl ; 62(47): e202309744, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37781858

ABSTRACT

Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qß. Mouse immunization with the Qß-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qß-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qß-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.


Subject(s)
Bacteriophages , Cancer Vaccines , Neoplasms , Mice , Humans , Animals , CA-19-9 Antigen , Cancer Vaccines/chemistry , Immunoglobulin G/metabolism
10.
Angew Chem Int Ed Engl ; 62(1): e202211985, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36173931

ABSTRACT

Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.


Subject(s)
Heparitin Sulfate , Oligosaccharides , Oligosaccharides/chemistry , Heparitin Sulfate/chemistry , Protein Binding , Glucuronic Acid/metabolism , Glucosamine
SELECTION OF CITATIONS
SEARCH DETAIL