Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(21): 5391-5404.e17, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597584

ABSTRACT

Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.


Subject(s)
Calcium/metabolism , Free Radical Scavengers/metabolism , Fungal Proteins/metabolism , Oryza/immunology , Plant Immunity , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Disease Resistance/genetics , Models, Biological , Oryza/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Protein Binding , Protein Stability , Reproduction , Species Specificity , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Zea mays/immunology
2.
Sensors (Basel) ; 24(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39001135

ABSTRACT

Mechanical equipment is composed of several parts, and the interaction between parts exists throughout the whole life cycle, leading to the widespread phenomenon of fault coupling. The diagnosis of independent faults cannot meet the requirements of the health management of mechanical equipment under actual working conditions. In this paper, the dynamic vertex interpretable graph neural network (DIGNN) is proposed to solve the problem of coupling fault diagnosis, in which dynamic vertices are defined in the data topology. First, in the date preprocessing phase, wavelet transform is utilized to make input features interpretable and reduce the uncertainty of model training. In the fault topology, edge connections are made between nodes according to the fault coupling information, and edge connections are established between dynamic nodes and all other nodes. Second the data topology with dynamic vertices is used in the training phase and in the testing phase, the time series data are only fed into dynamic vertices for classification and analysis, which makes it possible to realize coupling fault diagnosis in an industrial production environment. The features extracted in different layers of DIGNN interpret how the model works. The method proposed in this paper can realize the accurate diagnosis of independent faults in the dataset with an accuracy of 100%, and can effectively judge the coupling mode of coupling faults with a comprehensive accuracy of 88.3%.

3.
New Phytol ; 240(6): 2419-2435, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743547

ABSTRACT

Crop yield must increase to achieve food security in the face of a growing population and environmental deterioration. Grain size is a prime breeding target for improving grain yield and quality in crop. Here, we report that autophagy emerges as an important regulatory pathway contributing to grain size and quality in rice. Mutations of rice Autophagy-related 9b (OsATG9b) or OsATG13a causes smaller grains and increase of chalkiness, whereas overexpression of either promotes grain size and quality. We also demonstrate that THOUSAND-GRAIN WEIGHT 6 (TGW6), a superior allele that regulates grain size and quality in the rice variety Kasalath, interacts with OsATG8 via the canonical Atg8-interacting motif (AIM), and then is recruited to the autophagosome for selective degradation. In consistent, alteration of either OsATG9b or OsATG13a expression results in reciprocal modulation of TGW6 abundance during grain growth. Genetic analyses confirmed that knockout of TGW6 in either osatg9b or osatg13a mutants can partially rescue their grain size defects, indicating that TGW6 is one of the substrates for autophagy to regulate grain development. We therefore propose a potential framework for autophagy in contributing to grain size and quality in crops.


Subject(s)
Oryza , Oryza/physiology , Plant Breeding , Edible Grain/genetics , Autophagy
4.
Sensors (Basel) ; 24(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38203092

ABSTRACT

To tackle the problems of over-reliance on traditional experience, poor troubleshooting robustness, and slow response by maintenance personnel to changes in faults in the current aircraft health management field, this paper proposes the use of a knowledge graph. The knowledge graph represents troubleshooting in a new way. The aim of the knowledge graph is to improve the correlation between fault data by representing experience. The data source for this study consists of the flight control system manual and typical fault cases of a specific aircraft type. A knowledge graph construction approach is proposed to construct a fault knowledge graph for aircraft health management. Firstly, the data are classified using the ERNIE model-based method. Then, a joint entity relationship extraction model based on ERNIE-BiLSTM-CRF-TreeBiLSTM is introduced to improve entity relationship extraction accuracy and reduce the semantic complexity of the text from a linguistic perspective. Additionally, a knowledge graph platform for aircraft health management is developed. The platform includes modules for text classification, knowledge extraction, knowledge auditing, a Q&A system, and graph visualization. These modules improve the management of aircraft health data and provide a foundation for rapid knowledge graph construction and knowledge graph-based fault diagnosis.

5.
Molecules ; 28(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770764

ABSTRACT

Transition metal organic framework materials and their selenides are considered to be one of the most promising cathode materials for nickel-zinc (denoted as Ni-Zn) batteries due to their low cost, environmental friendliness, and controllable microstructure. Yet, their low capacity and poor cycling performance severely restricts their further development. Herein, we developed a simple one-pot hydrothermal process to directly synthesize NiSe2 (denotes as NiSe2-X based on the molar amount of SeO2 added) stacked layered sheets. Benefiting from the peculiar architectures, the fabricated NiSe2-1//Zn battery based on NiSe2 and the Zn plate exhibits a high specific capacity of 231.6 mAh g-1 at 1 A g-1, and excellent rate performance (162.8 mAh g-1 at 10 A g-1). In addition, the NiSe2//Zn battery also presents a satisfactory cycle life at the high current density of 8 A g-1 (almost no decay compared to the initial specific capacity after 1000 cycles). Additionally, the battery device also exhibits a satisfactory energy density of 343.2 Wh kg-1 and a peak power density of 11.7 kW kg-1. This work provides a simple attempt to design a high-performance layered cathode material for aqueous Ni-Zn batteries.

6.
Biochem Biophys Res Commun ; 625: 134-139, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35961137

ABSTRACT

Kinds of antibiotics are used to prevent and control bacteria infections, unfortunately, the overuse and misuse of antibiotic have promoted the emergence and spread of antibiotic-resistant bacteria. Therefore, understanding the mechanism of antibiotic resistance is very important. This study explores the combined effection of metal ions and antibiotic to the drug resistance of Escherichia coli. Our results found that the minimum inhibitory concentration (MIC) increased as the ammonium ferric citrate concentration increased, especially for gentamicin antibiotic. When the Fe3+ concentration reached 300 µM, the survival of E. coli was stably restored with the increased gentamicin concentration. Exogenous Fe3+ could decrease intracellular gentamicin concentration. On the other hand, Fe3+ treatment together with gentamicin could reduce reactive oxygen species (ROS) production, characterized by decreased levels of NADH and ATP. Furthermore, ROS-scavenging enzymes of superoxide dismutase (SOD) and catalase (CAT) were up-regulated and H2O2 plus gentamicin-mediated killing was restored by Fe3+. These results may have significant implications in understanding bacterial antibiotic-resistant mechanisms based on the external Fe3+ concentration.


Subject(s)
Escherichia coli Infections , Gentamicins , Anti-Bacterial Agents/pharmacology , Bacteria , Escherichia coli , Gentamicins/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Iron/pharmacology , Microbial Sensitivity Tests , Reactive Oxygen Species
7.
Sensors (Basel) ; 22(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36560182

ABSTRACT

This paper proposes a flexible sensor for detecting cracks on bridges. Strain and deflection sensing modules are integrated on the film that is made of composite conductive materials. By optimizing the preparation ratio and internal structure, the strain detection accuracy and sensitivity of the sensor have been improved. The bridge crack detection accuracy reached 91%, which is higher than current sensors. Experimental results show that the composite material containing 2.23 wt% carbon black (CB) mixed hybrid filler has good linearity, higher accuracy than sensors in use, excellent stretchability (>155%), high gauge factor (GF ~ 43.3), and excellent durability over 2000 stretching-releasing cycles under 10 N. The designed flexible sensor demonstrates the practicality and effectiveness of bridge crack detection and provides a feasible solution for accurate bridge health monitoring in the future.


Subject(s)
Soot , Wearable Electronic Devices , Electric Conductivity
8.
J Neurophysiol ; 126(4): 1030-1037, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34469702

ABSTRACT

Although the connection between heat shock protein 70 (HSP70) and vestibular migraine is not clear, HSP70 is neuroprotective in other scenarios. This study aimed to investigate the potential of exogenous HSP70 for treating migraine-like symptoms in a mouse model of nitroglycerin (NTG)-induced migraine. HSP70 levels were assessed in patients with vestibular migraine and healthy individuals by ELISA. Migraine was induced in mice by NTG, and HSP70 expression was examined in the trigeminal nucleus caudalis (TNC) tissue of mice treated with NTG and NTG together with exogenous HSP70. The effects of exogenous HSP70 on migraine-like symptoms were assessed through behavioral assays. Finally, the impact of HSP70 on oxidative stress and NF-κB signaling in mice with migraine was investigated. Serum HSP70 in patients with vestibular migraine was significantly lower than that of healthy individuals. NTG administration significantly suppressed HSP70 expression in mouse TNC tissue, which was reversed by exogenous HSP70. HSP70 alleviated NTG-induced mechanical hypersensitivity, light aversion, and anxiety-like behavior. Finally, exogenous HSP70 suppressed NTG-induced oxidative stress and NF-κB signaling. Our study suggests that exogenous HSP70 may be a potential therapy for alleviating migraine symptoms and our promising finding warrants further investigation of HSP70 for clinical application.NEW & NOTEWORTHY The study suggests that exogenous HSP70 may be a potential therapy for alleviating migraine symptoms and our promising finding warrants further investigation of HSP70 for clinical application.


Subject(s)
HSP70 Heat-Shock Proteins/blood , HSP70 Heat-Shock Proteins/pharmacology , Migraine Disorders/blood , Migraine Disorders/drug therapy , Nitroglycerin/pharmacology , Vasodilator Agents/pharmacology , Adult , Animals , Disease Models, Animal , Female , HSP70 Heat-Shock Proteins/administration & dosage , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Migraine Disorders/chemically induced , Recombinant Proteins , Young Adult
9.
Nanotechnology ; 31(20): 205501, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32018230

ABSTRACT

Three-dimensional (3D) surface enhanced Raman scattering (SERS) substrates were produced by magnetic force assisting self-assembled nanoparticles in arrayed holes. Compared to '2D' plasmonic structures used in conventional SERS substrates, the 'hot spots' existed on whole depth of the 3D SERS substrates, which greatly enhanced the sensitivity. The prepared 3D SERS substrate was able to detect 4-aminothiophenol with a concentration down to 1 pM. Furthermore, the substrate was applied to detect hexachlorobenzene residue in soil, indicating its great potential for rapid and sensitive detection of extreme low concentrated molecules, especially pollutants residues in foods and environments.

10.
Mol Cell ; 47(2): 169-82, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22795133

ABSTRACT

The roles of Oct4 and Nanog in maintaining self-renewal and undifferentiated status of adult stem cells are unclear. Here, increase in Oct4 and Nanog expression along with increased proliferation and differentiation potential but decreased spontaneous differentiation were observed in early-passage (E), hypoxic culture (H), and p21 knockdown (p21KD) mesenchymal stem cells (MSCs) compared to late-passage (L), normoxic culture (N), and scrambled shRNA-overexpressed (Scr) MSCs. Knockdown of Oct4 and Nanog in E, H, and p21KD MSCs decreased proliferation and differentiation potential and enhanced spontaneous differentiation, whereas overexpression of Oct4 and Nanog in L, N, and Scr MSCs increased proliferation and differentiation potential and suppressed spontaneous differentiation. Oct4 and Nanog upregulate Dnmt1 through direct binding to its promoter, thereby leading to the repressed expression of p16 and p21 and genes associated with development and lineage differentiation. These data demonstrate the important roles of Oct4 and Nanog in maintaining MSC properties.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/physiology , Gene Expression Regulation , Mesenchymal Stem Cells/cytology , Octamer Transcription Factor-3/physiology , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , Humans , Hypoxia , Mice , Models, Biological
11.
Plant Cell Rep ; 39(12): 1755-1765, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32970176

ABSTRACT

KEY MESSAGE: AtMYB2 protein represses the formation of axillary meristems in response to environmental stresses so that plants can undergo a shorter vegetative development stage under environmental stresses. Shoot branching is an important event determined by endogenous factors during the development of plants. The formation of axillary meristem is also significantly repressed by environmental stresses and the underlying mechanism is largely unknown. The REGULATOR OF AXILLARY MERISTEMS (RAX) genes encode the R2R3 MYB transcription factors that have been shown to regulate the formation of axillary meristems in Arabidopsis. The AtMYB2 is also a member of R2R3 MYB gene family whose expression is usually induced by the environmental stresses. In this study, our results showed that AtMYB2 protein plays a pivotal negative regulatory role in the formation of axillary meristem. AtMYB2 is mainly expressed in the leaf axils as that of RAX1. The environmental stresses can increase the expression of AtMYB2 protein which further inhibits the expression of RAX1 gene by binding to its promoter. Therefore, AtMYB2 protein represses the formation of axillary meristems in response to environmental stresses so that plants can undergo a shorter vegetative development stage under environmental stresses.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Meristem/growth & development , Trans-Activators/genetics , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Photoperiod , Plant Leaves/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Stress, Physiological/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism
12.
Bioprocess Biosyst Eng ; 43(6): 1093-1104, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32166399

ABSTRACT

A comprehensive model for nitrous oxide (N2O) emissions in an anaerobic/oxygen-limited aerobic (A/OLA) process is proposed here. This paper includes the following main innovations: (i) adding the phosphorus-accumulating organism (XPAO) denitrification pathway to the contribution of N2O emissions; (ii) considering the biological removal of organic matter and phosphorus and predicting the effect of influent phosphorus concentration on N2O emissions via an increase in the influent phosphorus concentration; and (iii) determining the effect of XPAO on N2O production in a simultaneous nitrification, denitrification and phosphorus removal (SNDPR) system by sensitivity analysis. The results suggested that the simulated data matched the measured data well. The predominant pathways of N2O emissions in the process of A/OLA were the ammonium-oxidizing bacterium (XAOB) denitrification pathway and the heterotrophic bacterium (XH) denitrification pathway, while the incomplete hydroxylamine (NH2OH) oxidation pathway and the XPAO denitrification pathway contributed less to N2O emissions. The metabolic activity of XPAO had a significant effect on N2O emissions, and increasing the influent phosphorus concentration was beneficial for reducing the release of N2O. This study is expected to provide a meaningful reference for reducing N2O emissions in wastewater treatment engineering.


Subject(s)
Bacteria/growth & development , Bioreactors , Models, Biological , Nitrous Oxide/metabolism , Oxygen/metabolism , Aerobiosis , Anaerobiosis
13.
Cytokine ; 117: 91-97, 2019 05.
Article in English | MEDLINE | ID: mdl-30831445

ABSTRACT

BACKGROUND: Current biomarkers such as fetal fibronectin and cervical length are accurate predictors of spontaneous preterm birth (sPTB) in women with clinically suspected preterm risk; however, these are not effective for predicting the risk of sPTB in asymptomatic women. Therefore, we performed this study with the objective of determining whether the combinations of specific serum cytokines could accurately predict the sPTB risk in asymptomatic women. METHODS: We conducted a nested case-control study with 129 incident sPTB cases and 258 individually matched controls who participated in an ongoing birth cohort study. The maternal serum levels of the selected 35 cytokines were measured. We evaluated the relationship between the multiple cytokines and sPTB risk using conditional logistic regression and elastic net model. RESULTS: A panel of cytokines was significantly associated with an increased risk of sPTB. The odds ratio (OR) of sPTB per standard deviation (SD) increase of the predictive model score was 1.57 (95% CI 1.25-1.97) for the cytokines model. The combination of the selected serum cytokines was substantially more effective in predicting the risk for sPTB, as the receiver-operator characteristic curve (AUC) values were 0.546 and 0.559 in the single cytokine model and it improved to 0.642 in the multiple cytokines model (PAUC difference = 0.02 for TNF-α vs. multiple cytokines; PAUC difference = 0.05 for TRAIL vs. multiple cytokines). Moreover, the prediction was more accurate in overweight pregnant women, with an AUC = 0.879. CONCLUSIONS: The current study suggested that the combination of selected serum cytokines can more effectively predict the risk of sPTB in asymptomatic women compared with the use of single cytokine.


Subject(s)
Cytokines/blood , Premature Birth/blood , Premature Birth/diagnosis , Adult , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Models, Biological , Pregnancy , ROC Curve , Risk Factors
14.
Nanotechnology ; 30(36): 365601, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31051479

ABSTRACT

Vertically aligned Si nanoconstrictions have potential for applications of electronic, photonic and phononic nanodevices. Herein, we report a featured method by utilizing the non-uniaxial tangential tension stress (σ T ) at the Si surface of a vertical hyperbolic Si/SiO2 core-shell nanostructure during thermal oxidation to achieve well defined Si nanoconstrictions. A thermal oxidation model was proposed to describe the correlations between σ T and the structural parameters of the hyperbolic nanostructure, i.e. oxide thickness (t ox ), sidewall curvature radius (R 0) and neck diameter (2r A0). Numerical simulations indicated that the Si surface at the position with the narrowest diameter (neck position) has the highest σ T (∼GPa) and presents a gradient distribution at both ends. By means of stress regulation, an array of well defined Si nanoconstrictions about 10 nm in diameter and about 34 nm in length was obtained. The experimental findings demonstrated that the high σ T would induce a nanofracture and thus a local oxidation to form a nanoconstriction, self-aligned at the neck position. The finding notably extends the capability of stress-assisted 'nanofabrication' of Si via thermal oxidation.

15.
Neurol Sci ; 37(8): 1209-20, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27215623

ABSTRACT

We preformed this meta-analysis to investigate the influence of ABCA1 (ATP-binding cassette sub-family A member 1) rs2422493 (C-477T), rs1800977 (C-14T), rs2066718 (V771M), and PTGS2 (Prostaglandin-endoperoxide synthase 2) rs20417 (G-765C) polymorphisms on the risk of Alzheimer's disease (AD). Seventeen eligible case-control studies were acquired from PubMed, Embase, Alzgene, Chinese National Knowledge Infrastructure and Wanfang databases. The pooled odds ratios (ORs) with 95 % confidence intervals (95 % CI) were calculated to evaluate the association under five genetic models. Combined data indicated that ABCA1 rs2422493 polymorphism was statistically significant associated with increasing AD risk in three genetic models (allelic T vs C: OR = 1.12, 95 % CI: 1.01-1.24; homozygous TT vs CC: OR = 1.26, 95 % CI: 1.03-1.55; and recessive TT vs TC + CC: OR = 1.33, 95 % CI: 1.12-1.58) while no association was found between two other ABCA1 polymorphisms and AD susceptibility. Nevertheless, a further risk-stratification analysis showed that ApoE-ε4 carriers with any ABCA1 polymorphism suffered a much higher probability to be AD patients. Meanwhile, PTGS2 rs20417 polymorphism was linked to decreasing AD risk with a P < 0.0001 in five genetic models (e.g., allelic C vs G: OR = 0.59, 95 % CI: 0.50-0.70; homozygous CC vs GG: OR = 0.31, 95 % CI: 0.18-0.52; and heterozygous CG vs GG: OR = 0.64, 95 % CI: 0.52-0.78). In summary, our meta-analysis results showed that ABCA1 rs2422493 polymorphism was a risk factor for AD while PTGS2 rs20417 variant showed a protective effect on AD risk. In addition, ABCA1 rs2066718 and rs1800977 polymorphisms might not contribute to AD susceptibility in general population, but they should play a role on AD development when interacted with ApoE-ε4.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Alzheimer Disease/genetics , Cyclooxygenase 2/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Humans , Risk Factors
16.
J Bone Oncol ; 44: 100520, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38261934

ABSTRACT

Background and objective: Due to their aggressive nature and poor prognosis, malignant femoral bone tumors present considerable hurdles. Early treatment commencement is essential for enhancing vital and practical outcomes. In this investigation, deep learning algorithms will be used to analyze magnetic resonance imaging (MRI) data to identify bone tumors that are malignant. Methodology: The study cohort included 44 patients, with ages ranging from 17 to 78 (22 women and 22 males). To categorize T1 and T2 weighted MRI data, this paper presents an improved DenseNet network model for the classification of bone tumor MRI, which is named GHA-DenseNet. Based on the original DenseNet model, the attention module is added to solve the problem that the deep convolutional model can reduce the loss of key features when capturing the location and content information of femoral bone tumor tissue due to the limitation of local receptive field. In addition, the sparse connection mode is used to prune the connection mode of the original model, so as to remove unnecessary and retain more useful fast connection mode, and alleviate the overfitting problem caused by small dataset size and image characteristics. In a clinical model designed to anticipate tumor malignancy, the utilization of T1 and T2 classifier output values, in combination with patient-specific clinical information, was a crucial component. Results: The T1 classifier's accuracy during the training phase was 92.88% whereas the T2 classifier's accuracy was 87.03%. Both classifiers demonstrated accuracy of 95.24% throughout the validation phase. During training and validation, the clinical model's accuracy was 82.17% and 81.51%, respectively. The clinical model's receiver operating characteristic (ROC) curve demonstrated its capacity to separate classes. Conclusions: The proposed method does not require manual segmentation of MRI scans because it makes use of pretrained deep learning classifiers. These algorithms have the ability to predict tumor malignancy and shorten the diagnostic and therapeutic turnaround times. Although the procedure only needs a little amount of radiologists' involvement, more testing on a larger patient cohort is required to confirm its efficacy.

17.
J Stomatol Oral Maxillofac Surg ; 125(3S): 101807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431082

ABSTRACT

OBJECTIVES: The goal of this study was to identify the survival benefit of chemotherapy in craniomaxillofacial osteosarcoma (CMFO) patients based on a US population. MATERIALS AND METHODS: The Surveillance, Epidemiology, and End Results (SEER) database was used to select patients with CMFO from 1988 to 2016. Age and tumor size were grouped by X-tail. Cox analysis were used to estimate hazards ratios (HR) among patients. All of patients were divided into two cohorts by using Propensity Score Matching (PSM) method to evaluate the effect of chemotherapy. All prognostic factors were included in the nomograms which predict the median survival time. RESULTS: 410 patients were included in our study. The results of survival rate, Kaplan-Meier and Cox regression were showed no significant difference between the group of chemotherapy performed and the group without chemotherapy. PSM analysis also demonstrated the limited survival advantage of chemotherapy. Moreover, all factors were further incorporated to construct the novel nomograms and its concordance indices (C-index) for internal validation of OS prediction were 0.749 (95 %CI:0.731-0.767). CONCLUSIONS: Our study did not show the advantage of chemotherapy on the overall survival outcome of CMFO. Although neoadjuvant chemotherapy was currently recommended in clinical treatment, more rigorous randomized controlled trials are still needed. Nomograms would assist clinicians in making more accurate survival evaluation and choosing the optimal medical treatment.


Subject(s)
Nomograms , Osteosarcoma , Propensity Score , SEER Program , Humans , Osteosarcoma/mortality , Osteosarcoma/drug therapy , Osteosarcoma/diagnosis , Osteosarcoma/pathology , Male , Female , SEER Program/statistics & numerical data , Adult , Adolescent , Middle Aged , Survival Rate , United States/epidemiology , Bone Neoplasms/mortality , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/diagnosis , Child , Young Adult , Neoadjuvant Therapy/statistics & numerical data , Antineoplastic Agents/therapeutic use , Aged , Kaplan-Meier Estimate , Retrospective Studies
18.
J Colloid Interface Sci ; 673: 37-48, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38875796

ABSTRACT

HYPOTHESIS: In the interfacial wetting boundary, the superhydrophobic surface is often damaged, and the anisotropic wettability of its surface has attracted many researchers' attention. The "petal effect" surface has typical anisotropic wettability. We predict that under the dual conditions of structural defects and high impact velocity, the "petal effect" becomes more adhesive on the surface. EXPERIMENTS: This study refers to the droplet state on rose petals, structural defects were constructed on the superhydrophobic surface. This paper studies the influence of macro-structural defects on the wettability change from natural to bionic "lotus effect" to "petal effect" in both static and dynamic angles. FINDINGS: Macro defects significantly change the static contact angle of the superhydrophobic surface. The higher the impact velocity of the droplet, the higher the energy dissipation of the "petal effect" surface (DSHS), which improves the adhesion of the surface to the droplet and prolongs the contact time. It is found that the defect structure and high impact velocity will directly affect the deposition and desorption of droplets on the superhydrophobic surface, and they are both essential. This wetting dynamic law is very likely to be helpful in the quantitative design of defect structure scale for dynamic desorption of droplets on superhydrophobic surfaces.

19.
J Agric Food Chem ; 72(27): 15334-15344, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38916549

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive. Here, we determined that DEHP exposure induced a compromised duodenum structure, which was concomitant with mitochondrial structural injury of epithelial cells. Importantly, DEHP exposure caused duodenum inflammatory epithelial cell damage and strong inflammatory response accompanied by activating the TLR4/MyD88/NF-κB signaling pathway. Mechanistically, DEHP exposure directly inhibits the expression of AQP1 and thus leads to an inflammatory response, ultimately disrupting duodenum integrity and barrier function. Collectively, our findings uncover the role of AQP1 in phthalate-induced intestinal disorders, and AQP1 could be a promising therapeutic approach for treating patients with intestinal disorders or inflammatory diseases.


Subject(s)
Aquaporin 1 , Intestinal Mucosa , Animals , Aquaporin 1/genetics , Aquaporin 1/metabolism , Mice , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/genetics , Inflammation/chemically induced , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Diethylhexyl Phthalate/toxicity , Phthalic Acids , Signal Transduction/drug effects
20.
J Agric Food Chem ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016055

ABSTRACT

Butachlor is widely used in agriculture around the world and therefore poses environmental and public health hazards due to persistent and poor biodegradability. Ferroptosis is a type of iron-mediated cell death controlled by glutathione (GSH) and GPX4 inhibition. P62 is an essential autophagy adaptor that regulates Keap1 to activate nuclear factor erythroid 2-related factor 2 (Nrf2), which effectively suppresses lipid peroxidation, thereby relieving ferroptosis. Here, we found that butachlor caused changes in splenic macrophage structure, especially impaired mitochondrial morphology with disordered structure, which is suggestive of the occurrence of ferroptosis. This was further confirmed by the detection of iron metabolism, the GSH system, and lipid peroxidation. Mechanistically, butachlor suppressed the protein level of p62 and promoted Keap1-mediated degradation of Nrf2, which results in decreased GPX4 expression and accelerated splenic macrophage ferroptosis. These findings suggest that targeting the p62-Nrf2-GPX4 signaling axis may be a promising strategy for treating inflammatory diseases.

SELECTION OF CITATIONS
SEARCH DETAIL