Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Mol Ther ; 31(10): 3084-3103, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37533255

ABSTRACT

Hypertension is a primary modifiable risk factor for cardiovascular diseases, which often induces renal end-organ damage and complicates chronic kidney disease (CKD). In the present study, histological analysis of human kidney samples revealed that hypertension induced mtDNA leakage and promoted the expression of stimulator of interferon genes (STING) in renal epithelial cells. We used angiotensin II (AngII)- and 2K1C-treated mouse kidneys to elucidate the underlying mechanisms. Abnormal renal mtDNA packing caused by AngII promoted STING-dependent production of inflammatory cytokines, macrophage infiltration, and a fibrogenic response. STING knockout significantly decreased nuclear factor-κB activation and immune cell infiltration, attenuating tubule atrophy and extracellular matrix accumulation in vivo and in vitro. These effects delayed CKD progression. Immunoprecipitation assays and liquid chromatography-tandem mass spectrometry showed that STING and ACSL4 were directly combined at the D53 and K412 amino acids of ACSL4. Furthermore, STING induced renal inflammatory response and fibrosis through ACSL4-dependent ferroptosis. Last, inhibition of ACSL4 using small interfering RNA, rosiglitazone, or Fer-1 downregulated AngII-induced mtDNA-STING-dependent renal inflammation. These results suggest that targeting the STING/ACSL4 axis might represent a potential strategy for treating hypertension-associated CKD.

2.
Amino Acids ; 55(9): 1141-1155, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37450047

ABSTRACT

Diabetic nephropathy (DN) can promote the occurrence of end-stage renal disease (ESRD). The injury of renal tubular epithelial cells is a significant reason for the occurrence of ESRD. A recent research demonstrated that ferroptosis was associated with renal tubular injury in DN. Ferroptosis is a kind of cell death brought on by the buildup of iron ions and lipid peroxidation brought on by ROS. Because carnosine (CAR) is a scavenger of iron ions and reactive oxygen species, we investigated whether CAR can improve DN by regulating ferroptosis. The results show that both CAR and Fer-1 significantly reduced kidney damage and inhibited ferroptosis in STZ mice. In addition, ferroptosis caused by HG or erastin (an inducer of ferroptosis) in human kidney tubular epithelial cell (HK2) was also rescued by CAR treatment. It was discovered that the protective effect of CAR against HG-induced ferroptosis was abolished when NRF2 was specifically knocked down in HK2 cells.

3.
Mol Ther ; 30(4): 1721-1740, 2022 04 06.
Article in English | MEDLINE | ID: mdl-34995800

ABSTRACT

Epigenetic changes are present in many physiological and pathological processes. The N6-methyladenosine (m6A) modification is the most common modification in eukaryotic mRNA. However, the role of m6A modification in diabetic nephropathy (DN) remains elusive. Here, we found that m6A modification was significantly upregulated in the kidney of type 1 and type 2 diabetic mice, which was caused by elevated levels of METTL3. Moreover, METTL3 is increased in podocyte of renal biopsy from patients with DN, which is related to renal damage. METTL3 knockout significantly reduced the inflammation and apoptosis in high glucose (HG)-stimulated podocytes, while its overexpression significantly aggravated these responses in vitro. Podocyte-conditional knockout METTL3 significantly alleviated podocyte injury and albuminuria in streptozotocin (STZ)-induced diabetic mice. Therapeutically, silencing METTL3 with adeno-associated virus serotype-9 (AAV9)-shMETTL3 in vivo mitigated albuminuria and histopathological injury in STZ-induced diabetic mice and db/db mice. Mechanistically, METTL3 modulated Notch signaling via the m6A modification of TIMP2 in an insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2)-dependent manner and exerted pro-inflammatory and pro-apoptotic effects. In summary, this study suggested that METTL3-mediated m6A modification is an important mechanism of podocyte injury in DN. Targeting m6A through the writer enzyme METTL3 is a potential approach for the treatment of DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Albuminuria/metabolism , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Podocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Streptozocin , Tissue Inhibitor of Metalloproteinase-2
4.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34253875

ABSTRACT

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Subject(s)
Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Kidney Glomerulus/drug effects , Podocytes/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Apoptosis/drug effects , Autophagy/drug effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Flavanones/administration & dosage , Injections, Intraperitoneal , Kidney Glomerulus/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Podocytes/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship
5.
Aging Cell ; : e14275, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016438

ABSTRACT

Renal aging, marked by the accumulation of senescent cells and chronic low-grade inflammation, leads to renal interstitial fibrosis and impaired function. In this study, we investigate the role of macrophages, a key regulator of inflammation, in renal aging by analyzing kidney single-cell RNA sequencing data of C57BL/6J mice from 8 weeks to 24 months. Our findings elucidate the dynamic changes in the proportion of kidney cell types during renal aging and reveal that increased macrophage infiltration contributes to chronic low-grade inflammation, with these macrophages exhibiting senescence and activation of ferroptosis signaling. CellChat analysis indicates enhanced communications between macrophages and tubular cells during aging. Suppressing ferroptosis alleviates macrophage-mediated tubular partial epithelial-mesenchymal transition in vitro, thereby mitigating the expression of fibrosis-related genes. Using SCENIC analysis, we infer Stat1 as a key age-related transcription factor promoting iron dyshomeostasis and ferroptosis in macrophages by regulating the expression of Pcbp1, an iron chaperone protein that inhibits ferroptosis. Furthermore, through virtual screening and molecular docking from a library of anti-aging compounds, we construct a docking model targeting Pcbp1, which indicates that the natural small molecule compound Rutin can suppress macrophage senescence and ferroptosis by preserving Pcbp1. In summary, our study underscores the crucial role of macrophage iron dyshomeostasis and ferroptosis in renal aging. Our results also suggest Pcbp1 as an intervention target in aging-related renal fibrosis and highlight Rutin as a potential therapeutic agent in mitigating age-related renal chronic low-grade inflammation and fibrosis.

6.
PeerJ ; 11: e16301, 2023.
Article in English | MEDLINE | ID: mdl-37953778

ABSTRACT

Background: Chronic kidney disease (CKD) is a significant global health issue characterized by progressive loss of kidney function. Renal interstitial fibrosis (TIF) is a common feature of CKD, but current treatments are seldom effective in reversing TIF. Nicotinamide N-methyltransferase (NNMT) has been found to increase in kidneys with TIF, but its role in renal fibrosis is unclear. Methods: Using mice with unilateral ureteral obstruction (UUO) and cultured renal interstitial fibroblast cells (NRK-49F) stimulated with transforming growth factor-ß1 (TGF-ß1), we investigated the function of NNMT in vivo and in vitro. Results: We performed single-cell transcriptome sequencing (scRNA-seq) on the kidneys of mice and found that NNMT increased mainly in fibroblasts of UUO mice compared to sham mice. Additionally, NNMT was positively correlated with the expression of renal fibrosis-related genes after UUO injury. Knocking down NNMT expression reduced fibroblast activation and was accompanied by an increase in DNA methylation of p53 and a decrease in its phosphorylation. Conclusions: Our findings suggest that chronic kidney injury leads to an accumulation of NNMT, which might decrease p53 methylation, and increase the expression and activity of p53. We propose that NNMT promotes fibroblast activation and renal fibrosis, making NNMT a novel target for preventing and treating renal fibrosis.


Subject(s)
Nicotinamide N-Methyltransferase , Renal Insufficiency, Chronic , Ureteral Obstruction , Fibrosis , Kidney/metabolism , Nicotinamide N-Methyltransferase/genetics , Renal Insufficiency, Chronic/genetics , Tumor Suppressor Protein p53/metabolism , Ureteral Obstruction/genetics , Animals , Mice
7.
Int Immunopharmacol ; 116: 109754, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36753983

ABSTRACT

The pathophysiological mechanism of acute kidney injury (AKI) is complicated, and effective drugs are still lacking. Ferroptosis is a newly discovered regulatory cell death mode characterized by the lethal accumulation of iron and reactive oxygen species-(ROS-)-dependent lipid hydroperoxides. In recent years, ferroptosis has been confirmed to be involved in the progression of AKI. Paeoniflorin (PF) is a traditional Chinese medicine that has protective effects on a variety of kidney diseases including AKI. However, the mechanism by which PF attenuates AKI is unclear. We detected that PF attenuated serum biochemical markers, histological damage, ferroptosis and inflammation in a dose-dependent manner in a mouse AKI model with bilateral renal artery ischemia-reperfusion (IR). Hypoxia-reoxygenation (HR)-induced ferroptosis and inflammation was also inhibited by PF in human renal tubular epithelial cells (HK2). RNA sequence analysis revealed that PF inhibited ferroptosis in HK2 cells by upregulating Slc7a11 in the glutathione pathway after HR treatment. PF failed to further protect cells with specific knockdown of Slc7a11 from ferroptosis under HR conditions. Consequently, these data indicated that PF prevention of ferroptosis in AKI requires dependence on Slc7a11. This study provided a scientific basis for the clinical search for drugs to prevent IR induced AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Reperfusion Injury , Animals , Humans , Mice , Acute Kidney Injury/drug therapy , Amino Acid Transport System y+ , Disease Models, Animal , Hypoxia , Inflammation , Ischemia , Reperfusion Injury/drug therapy
8.
J Ethnopharmacol ; 310: 116422, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36972781

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY: Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS: Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS: In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION: In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Humans , Cisplatin/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Inflammation/chemically induced , HSP90 Heat-Shock Proteins/therapeutic use
9.
Diabetes Metab Syndr Obes ; 15: 1945-1959, 2022.
Article in English | MEDLINE | ID: mdl-35774536

ABSTRACT

Background: Diabetic kidney disease (DKD) is closely associated with the death or survival of resident kidney cells. Aim: The purpose of this study was to determine the changes in renal cell survival and death in DKD and their diagnostic values in DKD progression. Materials and Methods: This study analyzed a dataset of renal tissues from DKD patients to identify changes in genes associated with renal cell death and survival. Our findings were subsequently validated in human kidney tissues. Differential indicators of DKD patients' clinicopathological data screened by stepwise regression and glomerular P62 protein expression were included in binary logistic regression analysis to assess the impact of these parameters on DKD progression. A receiver operating characteristic (ROC) curve analysis was employed to evaluate the diagnostic value of P62 protein in DKD progression. Results: Bioinformatics analysis results revealed that glomerular autophagy in DKD was more significantly altered, which was consistent with the semi-quantitative results of P62 in glomeruli. Further studies established that P62 expression was mainly increased in podocytes. Stepwise regression analysis indicated that changes in the expressions of glomerular P62 and apolipoprotein A1 (ApoA1) might be involved in the progression of DKD. However, binary logistic regression analysis results suggested that only P62 was significantly associated with DKD development. ROC curve analysis showed that the area under the curve (AUC) of P62 for the detection of DKD was 0.905. Conclusion: Autophagy inhibition occurred in both glomeruli and tubules, and was most pronounced in glomerular podocytes. The levels of P62 protein in glomeruli, as an autophagy activity indicator, was one of the predictors of entering the stage of macroalbuminuria in DKD.

10.
Oxid Med Cell Longev ; 2022: 4776243, 2022.
Article in English | MEDLINE | ID: mdl-35979396

ABSTRACT

Acute kidney injury (AKI) is still a puzzling clinical problem; its pathophysiology is not completely understood. Up to now, an effective treatment for AKI is lacking. Ferroptosis is a novel form of regulated cell death characterized by the lethal accumulation of lipid hydroperoxides that are dependent on iron and reactive oxygen species and mitochondrial dysfunction. Recently, ferroptosis was shown to play a vital role in AKI such as ischemia-reperfusion kidney injury and folic acid-induced AKI. Melatonin (MT) is an antioxidant that regulates the sleep-wake cycle. While the therapeutic effect of melatonin on AKI has been reported, its mechanism for the treatment of renal ferroptosis remains unclear. We found that melatonin treatment significantly alleviated the serum biochemistry index and histopathological alterations in vivo AKI models induced by bilateral renal artery ischemia reperfusion and folic acid in mice. Ferroptosis induced by hypoxia and reoxygenation or erastin (Era) in mouse tubular epithelial cells (MTEC) was also rescued by melatonin treatment. RNA sequence analysis of ferroptosis-related genes showed that melatonin affects oxidative stress responses by inhibiting hypoxia and reoxygenation- (HR-) mediated downregulation of NRF2 and upregulation of Slc7a11 in MTEC. Specific knockdown of NRF2 increased the sensitivity of cells to ferroptosis, and melatonin failed to protect against ferroptosis in the HR condition. Together, our data indicate that melatonin prevents ferroptosis in AKI by acting on the NRF2/Slc7a11 axis.


Subject(s)
Acute Kidney Injury , Ferroptosis , Melatonin , Reperfusion Injury , Acute Kidney Injury/chemically induced , Animals , Folic Acid , Hypoxia , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , NF-E2-Related Factor 2/genetics , Reperfusion Injury/pathology
11.
Front Pharmacol ; 13: 966645, 2022.
Article in English | MEDLINE | ID: mdl-36147345

ABSTRACT

Necroptosis was elevated in both tubulointerstitial and glomerular renal tissue in patients with diabetic kidney disease (DKD), and was most pronounced on glomerulus in the stage with macroalbuminuria. This study further explored whether paeoniflorin (PF) could affect podocyte necroptosis to protect kidney injure in vivo and in vitro. Our study firstly verified that there are obvious necroptosis-related changes in the glomeruli of DKD through bioinformatics analysis combined with clinicopathological data. STZ-induced mouse diabetes model and high-glucose induced podocyte injury model were used to evaluate the renoprotection, podocyte injury protection and necroptosis regulation of PF in DKD. Subsequently, the target protein-TNFR1 that PF acted on podocytes was found by computer target prediction, and then molecular docking and Surface plasmon resonance (SPR) experiments were performed to verify that PF had the ability to directly bind to TNFR1 protein. Finally, knockdown of TNFR1 on podocytes in vitro verified that PF mainly regulated the programmed necrosis of podocytes induced by high glucose through TNFR1. In conclusion, PF can directly bind and promote the degradation of TNFR1 in podocytes and then regulate the RIPK1/RIPK3 signaling pathway to affect necroptosis, thus preventing podocyte injury in DKD. Thus, TNFR1 may be used as a new potential target to treat DKD.

12.
Int Immunopharmacol ; 108: 108849, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35588657

ABSTRACT

Acute kidney injury (AKI) is marked by a fast deterioration of the kidney function that may be caused by a variety of factors. Recently, although our group found that PPBICA alleviated programmed cell death in AKI, poor water solubility limited its bioavailability. In this research, we screened a series of derivatives and found that C-316-1 had the best suppressive effect on preventing necroptosis and inflammation in cisplatin- and ischemia/reperfusion-induced AKI in vitro and in vivo with lower toxicity and better water solubility. Mass spectrometry results showed that C-316-1 bound to heat shock protein 90 (Hsp90), which was further confirmed by molecular docking and surface plasmon resonance. Additionally, the Hsp90 expression was upregulated in the blood and tissues of AKI patients. We discovered that C-316-1 decreased the RIPK1 protein level without affecting its mRNA expression. The proteasome inhibitor, MG132 restored the level of RIPK1 reduced by C-316-1, suggesting that C-316-1 limits necroptosis by promoting the degradation of RIPK1 rather than by reducing its production. Immunoprecipitation further showed that pretreatment with C-316-1 disrupted the Hsp90-Cdc37 protein-protein Interactions (PPIs). Thereby, C-316-1 inhibited the Hsp90-Cdc37 complex formation and led to a significant decrease in RIPK1, which in turn reduced necroptosis. Moreover, C-316-1 treatment did not protect against kidney injury in vivo and in vitro when Hsp90 was knocked down and R46, E47, and S50 in Cdc37 binding site of Hsp90 might form an important active pocket with C-316-1. These findings suggest that C-316-1 is a potential therapeutic agent against RIPK1-Mediated Necroptosis in AKI.


Subject(s)
Acute Kidney Injury , HSP90 Heat-Shock Proteins , Necroptosis , Acute Kidney Injury/metabolism , Apoptosis , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Inflammation/drug therapy , Molecular Docking Simulation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
13.
Front Physiol ; 13: 890566, 2022.
Article in English | MEDLINE | ID: mdl-35721535

ABSTRACT

Aims/Introduction: Diabetic nephropathy (DN) is one of the main complications of diabetes. Genomics may reveal the essential pathogenesis of DN. We analyzed datasets to search for key genes to explore pathological mechanisms of DN. Materials and Methods: In this study, weighted gene co-expression network analysis (WGCNA) was used to divide the differential expression genes (DEGs) from GSE142025 into different modules, and enrichment pathway analysis was conducted for each module to find key genes related to cell death pathway. Then, verification was carried out through network and histopathology. Finally, the regulatory mechanisms of key gene expression, including transcription factors (TFs), miRNA and E3 ligases related to ubiquitination, were predicted through website prediction and then miRNA results were validated using GSE51674 dataset. Results: The results of WGCNA and enrichment pathway analysis indicated that ferroptosis had significantly occurred in advanced DN (AND) group. Analysis of DEGs indicated that the occurrence and development of ferroptosis are mainly through ALOX15-mediated lipid metabolism pathway, which was found in all intrinsic cells of the glomerulus detected by IHC and IF staining. Moreover, network predictions were used for searching ALOX15-related TFs and ubiquitination. Meanwhile, the network predictions combining with other dataset furtherly discovered miRNAs which regulated ALOX15 expression. This study showed that the levels of mmu-miR-142-3p increased in DN mice kidney tissues, compared with the NC group. Conclusion: Ferroptosis existed in glomerular intrinsic cells of ADN group and its potential key candidate gene was ALOX15 which may be regulated by miR-142 and miRNA-650, TFs (CREBBP, EP300, HDAC1, MTA1, SPI1, STAT6) and E3 ligases related to ubiquitination (PML, ZMIZ1, MARCHF1, MARCHF3, MARCHF8, MARCHF11).

14.
Phytomedicine ; 106: 154400, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36049428

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin (PF) was found to exhibit renal protection from diabetic kidney disease (DKD) in previous trials, but its specific mechanism remains to be elucidated. AIM OF THE STUDY: This study furtherly explored the specific mechanism of PF in protect podocyte injury in DKD. MATERIALS AND METHODS: We observed the effects of PF on renal tissue and podocytes in DKD by constructing the vitro and vivo models after measuring the pharmacokinetic characteristics of PF. Target proteins of PF were found through target prediction, and verified by molecular docking, CESTA, and SPR, and then furtherly explored the downstream regulation mechanism related to podocyte autophagy and apoptosis by network prediction and co-immunoprecipitation. Finally, by using the target protein inhibitor in vivo and knocking down the target protein gene in vitro, it was verified that PF played a role in regulating autophagy and apoptosis through the target protein in diabetic nephropathy. RESULTS: This study found that in STZ-induced mice model, PF could improve the renal biochemical and pathological damage and podocyte injure (p < 0.05), upregulate autophagy activity (p < 0.05), but inhibit apoptosis (p < 0.01). Vascular endothelial growth factor receptor 2 (VEGFR2), predicted as the target of PF, directly bind with PF reflected by molecular docking and surface plasmon resonance detection. Animal studies demonstrated that VEGFR2 inhibitors have a protective effect similar to that of PF on DKD. Network prediction and co-immunoprecipitation further confirmed that VEGFR2 was able to bind PIK3CA to regulate PI3K-AKT signaling pathway. Furthermore, PF downregulated the phosphorylation of PI3K and AKT (p < 0.05). In vitro, similarly to autophagy inhibitors, PF was also found to improve podocyte markers (p < 0.05) and autophagy activity (p < 0.05), decrease caspase 3 protein (p < 0.05) and further inhibited VEGFR2-PI3K-AKT activity (p < 0.05). Finally, the results of VEGFR2 knockdown were similar to the effect of PF in HG-stimulated podocytes. CONCLUSION: In conclusion, PF restores autophagy and inhibits apoptosis by targeting the VEGFR2-mediated PI3K-AKT pathway to improve renal injury in DKD, that provided a theoretical basis for PF treatment in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Animals , Apoptosis , Autophagy , Caspase 3/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Diabetic Nephropathies/metabolism , Glucosides , Mice , Molecular Docking Simulation , Monoterpenes , Phosphatidylinositol 3-Kinases/metabolism , Podocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL