Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proteomics ; 24(17): e2400031, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39044338

ABSTRACT

In this study, we present a high-resolution dataset and bioinformatic analysis of the proteome of Bacillus subtilis 168 trp+ (BSB1) during germination and spore outgrowth. Samples were collected at 14 different time points (ranging from 0 to 130 min) in three biological replicates after spore inoculation into germination medium. A total of 2191 proteins were identified and categorized based on their expression kinetics. We observed four distinct clusters that were analyzed for functional categories and KEGG pathways annotations. The examination of newly synthesized proteins between successive time points revealed significant changes, particularly within the first 50 min. The dataset provides an information base that can be used for modeling purposes and inspire the design of new experiments.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Proteome , Spores, Bacterial , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Proteome/metabolism , Proteome/analysis , Spores, Bacterial/metabolism , Spores, Bacterial/growth & development , Bacterial Proteins/metabolism , Proteomics/methods , Computational Biology/methods
2.
J Proteome Res ; 23(1): 418-429, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38038272

ABSTRACT

The inherent diversity of approaches in proteomics research has led to a wide range of software solutions for data analysis. These software solutions encompass multiple tools, each employing different algorithms for various tasks such as peptide-spectrum matching, protein inference, quantification, statistical analysis, and visualization. To enable an unbiased comparison of commonly used bottom-up label-free proteomics workflows, we introduce WOMBAT-P, a versatile platform designed for automated benchmarking and comparison. WOMBAT-P simplifies the processing of public data by utilizing the sample and data relationship format for proteomics (SDRF-Proteomics) as input. This feature streamlines the analysis of annotated local or public ProteomeXchange data sets, promoting efficient comparisons among diverse outputs. Through an evaluation using experimental ground truth data and a realistic biological data set, we uncover significant disparities and a limited overlap in the quantified proteins. WOMBAT-P not only enables rapid execution and seamless comparison of workflows but also provides valuable insights into the capabilities of different software solutions. These benchmarking metrics are a valuable resource for researchers in selecting the most suitable workflow for their specific data sets. The modular architecture of WOMBAT-P promotes extensibility and customization. The software is available at https://github.com/wombat-p/WOMBAT-Pipelines.


Subject(s)
Benchmarking , Proteomics , Workflow , Software , Proteins , Data Analysis
3.
Molecules ; 28(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175121

ABSTRACT

A typical bottom-up proteomic workflow comprises sample digestion with trypsin, separation of the hydrolysate using reversed-phase HPLC, and detection of peptides via electrospray ionization (ESI) tandem mass spectrometry. Despite the advantages and wide usage of protein identification and quantification, the procedure has limitations. Some domains or parts of the proteins may remain inadequately described due to inefficient detection of certain peptides. This study presents an alternative approach based on sample acetylation and mass spectrometry with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). These ionizations allowed for improved detection of acetylated peptides obtained via chymotrypsin or glutamyl peptidase I (Glu-C) digestion. APCI and APPI spectra of acetylated peptides often provided sequence information already at the full scan level, while fragmentation spectra of protonated molecules and sodium adducts were easy to interpret. As demonstrated for bovine serum albumin, acetylation improved proteomic analysis. Compared to ESI, gas-phase ionizations APCI and APPI made it possible to detect more peptides and provide better sequence coverages in most cases. Importantly, APCI and APPI detected many peptides which passed unnoticed in the ESI source. Therefore, analytical methods based on chymotrypsin or Glu-C digestion, acetylation, and APPI or APCI provide data complementary to classical bottom-up proteomics.


Subject(s)
Chymotrypsin , Proteomics , Acetylation , Spectrometry, Mass, Electrospray Ionization/methods , Atmospheric Pressure , Chromatography, High Pressure Liquid/methods , Peptides
4.
Chemistry ; 28(14): e202104208, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35076143

ABSTRACT

Glyoxal-linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC click reaction of 4-azidophenylglyoxal or a Sonogashira reaction of 4-bromophenylglyoxal with 5-ethynyl-dUMP or -dUTP. The triphosphates were used as substrates for enzymatic synthesis of modified DNA probes with KOD XL DNA polymerase. The glyoxal-linked nucleotides reacted with arginine-containing peptides to form stable imizadolone-linked conjugates. This reactive glyoxal modification in DNA was used for efficient bioconjugations and crosslinking with Arg-containing peptides or proteins (e. g., histones) and was found to be more reactive than previously reported 1,3-diketone-linked DNA probes.


Subject(s)
Arginine , Nucleotides , DNA/metabolism , Glyoxal , Histones , Nucleotides/metabolism , Peptides/metabolism
5.
J Fish Biol ; 101(1): 77-91, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35475498

ABSTRACT

Sturgeons are ancient fish exhibiting unique genome plasticity and a high tendency to produce spontaneously autopolyploid genome states. The temperature profiles of the rivers in which sturgeon live and reproduce have been severely altered by human intervention, and the effect of global warming is expected to cause further temperature shifts, which may be detrimental for early developmental stages with narrow windows of thermal tolerance. The comparison of the performance of diploid and autopolyploid sturgeon kept at unfavourable temperatures contributes to scientific knowledge of the effects of polyploid genome states on organisms and can shed light on the ability of polyploids to cope with human-induced alterations to natural conditions. Using the sterlet Acipenser ruthenus as a model species, we carried out conventional artificial fertilization, as well as the induction of the second polar body retention (SPBR), of the first mitotic division suppression (FMDS) and of the second polar body retention followed by the first mitotic division suppression (SPBR+FMDS). Two experiments were conducted to evaluate the effect of polyploidy on two basic performance parameters, survival and growth. In Experiment 1, fish belonging to untreated, SPBR-, FMDS- and SPBR+FMDS-induced groups were kept at 10, 16 and 20°C from the neurula stage until the end of endogenous feeding. In Experiment 2, larvae from the untreated and SPBR-induced groups were reared at 10, 16 and 20°C after their endogenous feeding transition for 3 weeks. Based on our findings, we report that the embryos, prelarvae and larvae of triploid A. ruthenus do not differ from diploids in their ability to survive, grow and develop under suboptimal temperature conditions, while the survival of tetraploids was significantly reduced even at the optimal temperature and even more so at temperatures far from the optimum. This was also the case in the 2n/4n mosaics observed in FMDS-induced group. Thus, we assume that in tetraploid and 2n/4n individuals, the limits of thermal tolerance are closer to the optimum than in diploids. We also conclude that the hexaploid genome state is probably lethal in A. ruthenus since none of the hexaploids or 3n/6n mosaics arising from the SPBR+FMDS induction survived the prelarval period.


Subject(s)
Fishes , Polyploidy , Temperature , Animals , Diploidy , Fishes/genetics , Genome , Triploidy
6.
Cytometry A ; 99(7): 743-752, 2021 07.
Article in English | MEDLINE | ID: mdl-33215865

ABSTRACT

Flow cytometry is an effective and widely used tool for determination of ploidy in fish, but it is not always possible to access the fresh samples for analysis. We investigated the potential for extended storage of fish tissue with sterlet and tench as representative species of Chondrostei and Teleostei, using blood and fin of subadult/adult specimens and tail of larvae. Thirteen procedures for extending storage, selected for rapidity and simplicity in both field and laboratory conditions, were tested for each tissue sample. Flow cytometry was applied to fresh tissue immediately after sampling and to tissue subjected to experimental protocols, always along with species-specific standard, after 1, 5, and 10 days storage at 0-4°C or freezing at -80°C. The fluorochrome 4',6-diamidine-2'-phenylindole dihydrochloride was used with excitation/emission maximum 358/461 nm. Based on the measurability of stored samples, evaluation of directly measured coefficients of variation of their DNA peaks and the changes in fluorescence intensity compared to fresh tissue, optimal procedures for extended storage of the selected tissue types of the model species are suggested. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Subject(s)
DNA , Ploidies , Animals , DNA/genetics , Flow Cytometry
7.
Proc Natl Acad Sci U S A ; 115(30): E7053-E7062, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29997176

ABSTRACT

Lens epithelium-derived growth factor/p75 (LEDGF/p75, or PSIP1) is a transcriptional coactivator that tethers other proteins to gene bodies. The chromatin tethering function of LEDGF/p75 is hijacked by HIV integrase to ensure viral integration at sites of active transcription. LEDGF/p75 is also important for the development of mixed-lineage leukemia (MLL), where it tethers the MLL1 fusion complex at aberrant MLL targets, inducing malignant transformation. However, little is known about how the LEDGF/p75 protein interaction network is regulated. Here, we obtained solution structures of the complete interfaces between the LEDGF/p75 integrase binding domain (IBD) and its cellular binding partners and validated another binding partner, Mediator subunit 1 (MED1). We reveal that structurally conserved IBD-binding motifs (IBMs) on known LEDGF/p75 binding partners can be regulated by phosphorylation, permitting switching between low- and high-affinity states. Finally, we show that elimination of IBM phosphorylation sites on MLL1 disrupts the oncogenic potential of primary MLL1-rearranged leukemic cells. Our results demonstrate that kinase-dependent phosphorylation of MLL1 represents a previously unknown oncogenic dependency that may be harnessed in the treatment of MLL-rearranged leukemia.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Cell Line, Tumor , HIV/enzymology , HIV/genetics , HIV Integrase/genetics , HIV Integrase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Phosphorylation/genetics , Transcription Factors/genetics
8.
Angew Chem Int Ed Engl ; 60(32): 17383-17387, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34107150

ABSTRACT

Linear or branched 1,3-diketone-linked thymidine 5'-O-mono- and triphosphate were synthesized through CuAAC click reaction of diketone-alkynes with 5-azidomethyl-dUMP or -dUTP. The triphosphates were good substrates for KOD XL DNA polymerase in primer extension synthesis of modified DNA. The nucleotide bearing linear 3,5-dioxohexyl group (HDO) efficiently reacted with arginine-containing peptides to form stable pyrimidine-linked conjugates, whereas the branched 2-acetyl-3-oxo-butyl (PDO) group was not reactive. Reaction with Lys or a terminal amino group formed enamine adducts that were prone to hydrolysis. This reactive HDO modification in DNA was used for bioconjugations and cross-linking with Arg-containing peptides or proteins (e.g. histones).


Subject(s)
Cross-Linking Reagents/chemistry , DNA/chemistry , Ketones/chemistry , Peptides/chemistry , Proteins/chemistry , Thymine Nucleotides/chemistry , Animals , Arginine/chemistry , Cattle , Cross-Linking Reagents/chemical synthesis , DNA/chemical synthesis , Histones/chemistry , Ketones/chemical synthesis , Serum Albumin, Bovine/chemistry , Thymine Nucleotides/chemical synthesis , Tumor Suppressor Protein p53/chemistry
9.
Proteomics ; 20(14): e2000032, 2020 07.
Article in English | MEDLINE | ID: mdl-32336041

ABSTRACT

In this paper, correlation analysis of protein and mRNA levels in the soil dwelling bacteria Streptomyces coelicolor (S. coelicolor M145) is presented during development of the population as it grew in liquid medium using three biological and two technical replicates, measured during exponential growth, and its entry into the stationary phase. The proteome synthesis time series are compared with the gene expression time series measured previously under identical experimental conditions. Results reveal that about one third of protein/mRNA synthesis profiles are well correlated while another third are correlated negatively. Functional analysis of the highly correlated groups is presented. Based on numerical simulation, the negative correlation between protein and mRNA is shown to be caused by the difference between the rate of translation and protein degradation.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Developmental , Proteome/metabolism , RNA, Messenger/metabolism , Streptomyces coelicolor/growth & development , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Proteome/analysis , RNA, Messenger/genetics , Soil/chemistry , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism
10.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31167910

ABSTRACT

The host structural maintenance of chromosomes 5/6 complex (Smc5/6) suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the cellular DNA damage-binding protein 1 (DDB1)-containing E3 ubiquitin ligase to target Smc5/6 for degradation. However, the details of how HBx modulates the interaction between DDB1 and Smc5/6 remain to be determined. In this study, we performed biophysical analyses of recombinant HBx and functional analysis of HBx mutants in HBV-infected primary human hepatocytes (PHH) to identify key regions and residues that are required for HBx function. We determined that recombinant HBx is soluble and exhibits stoichiometric zinc binding when expressed in the presence of DDB1. Mass spectrometry-based hydrogen-deuterium exchange and cysteine-specific chemical footprinting of the HBx:DDB1 complex identified several HBx cysteine residues (located between amino acids 61 and 137) that are likely involved in zinc binding. These cysteine residues did not form disulfide bonds in HBx expressed in human cells. In line with the biophysical data, functional analysis demonstrated that HBx amino acids 45 to 140 are required for Smc6 degradation and HBV transcription in PHH. Furthermore, site-directed mutagenesis determined that C61, C69, C137, and H139 are necessary for HBx function, although they are likely not essential for DDB1 binding. This CCCH motif is highly conserved in HBV as well as in the X proteins from various mammalian hepadnaviruses. Collectively, our data indicate that the essential HBx cysteine and histidine residues form a zinc-binding motif that is required for HBx function.IMPORTANCE The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses HBV transcription. HBV counters this restriction by expressing HBV X protein (HBx), which redirects a host ubiquitin ligase to target Smc5/6 for degradation. Despite this recent advance in understanding HBx function, the key regions and residues of HBx required for Smc5/6 degradation have not been determined. In the present study, we performed biochemical, biophysical, and cell-based analyses of HBx. By doing so, we mapped the minimal functional region of HBx and identified a highly conserved CCCH motif in HBx that is likely responsible for coordinating zinc and is essential for HBx function. We also developed a method to produce soluble recombinant HBx protein that likely adopts a physiologically relevant conformation. Collectively, this study provides new insights into the HBx structure-function relationship and suggests a new approach for structural studies of this enigmatic viral regulatory protein.


Subject(s)
Hepatitis B virus/physiology , Hepatitis B/metabolism , Hepatitis B/virology , Trans-Activators/metabolism , Zinc/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acids , Binding Sites , DNA-Binding Proteins/metabolism , Host-Pathogen Interactions , Humans , Protein Binding , Recombinant Fusion Proteins , Trans-Activators/chemistry , Viral Regulatory and Accessory Proteins
11.
Int J Mol Sci ; 21(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32013007

ABSTRACT

Pathogenic yeasts Candida albicans and Candida parapsilosis possess a ß-type carbonic anhydrase Nce103p, which is involved in CO2 hydration and signaling. C. albicans lacking Nce103p cannot survive in low CO2 concentrations, e.g., in atmospheric growth conditions. Candida carbonic anhydrases are orthologous to the Saccharomyces cerevisiae enzyme, which had originally been detected as a substrate of a non-classical export pathway. However, experimental evidence on localization of C. albicans and C. parapsilosis carbonic anhydrases has not been reported to date. Immunogold labeling and electron microscopy used in the present study showed that carbonic anhydrases are localized in the cell wall and plasmatic membrane of both Candida species. This localization was confirmed by Western blot and mass spectrometry analyses of isolated cell wall and plasma membrane fractions. Further analysis of C. albicans and C. parapsilosis subcellular fractions revealed presence of carbonic anhydrases also in the cytosolic and mitochondrial fractions of Candida cells cultivated in shaken liquid cultures, under the atmospheric conditions.


Subject(s)
Candida albicans/growth & development , Candida parapsilosis/growth & development , Carbonic Anhydrases/metabolism , Batch Cell Culture Techniques , Candida albicans/enzymology , Candida parapsilosis/enzymology , Cell Membrane/enzymology , Cell Wall/enzymology , Cytosol/enzymology , Fungal Proteins/metabolism , Mass Spectrometry , Microscopy, Electron , Mitochondria/enzymology
12.
Int J Mol Sci ; 21(18)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932591

ABSTRACT

Prostate-Specific Membrane Antigen (PSMA) is an established biomarker for the imaging and experimental therapy of prostate cancer (PCa), as it is strongly upregulated in high-grade primary, androgen-independent, and metastatic lesions. Here, we report on the development and functional characterization of recombinant single-chain Fv (scFv) and Fab fragments derived from the 5D3 PSMA-specific monoclonal antibody (mAb). These fragments were engineered, heterologously expressed in insect S2 cells, and purified to homogeneity with yields up to 20 mg/L. In vitro assays including ELISA, immunofluorescence and flow cytometry, revealed that the fragments retain the nanomolar affinity and single target specificity of the parent 5D3 antibody. Importantly, using a murine xenograft model of PCa, we verified the suitability of fluorescently labeled fragments for in vivo imaging of PSMA-positive tumors and compared their pharmacokinetics and tissue distribution to the parent mAb. Collectively, our data provide an experimental basis for the further development of 5D3 recombinant fragments for future clinical use.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Surface/immunology , Glutamate Carboxypeptidase II/immunology , Prostatic Neoplasms/immunology , Animals , Cell Line , Cell Line, Tumor , Fluorescence , Humans , Insecta , Male , Mice , Mice, Nude , PC-3 Cells , Recombinant Proteins/immunology , Single-Chain Antibodies/immunology , Xenograft Model Antitumor Assays/methods
13.
J Biol Chem ; 293(43): 16818-16829, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30213860

ABSTRACT

Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.


Subject(s)
Insulin/agonists , Insulin/metabolism , Receptor, Insulin/metabolism , Receptors, Somatomedin/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Humans , Insulin-Like Growth Factor I/chemistry , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Kinetics , Protein Binding , Receptor, IGF Type 1 , Receptor, Insulin/chemistry , Receptor, Insulin/genetics , Receptors, Somatomedin/chemistry , Receptors, Somatomedin/genetics
14.
Chemistry ; 25(69): 15779-15785, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31523878

ABSTRACT

A series of fluoroalkylated cyclic λ3 -iodanes and their hydrochloride salts was prepared and used in a combination with sodium ascorbate in buffer or aqueous methanol mixtures for radical fluoroalkylation of a range of substituted indoles, pyrroles, tryptophan or its derivatives, and Trp residues in peptides. As demonstrated on several peptides, the aromatic amino acid residues of Trp, Tyr, Phe, and His are targeted with high selectivity to Trp. The functionalization method is biocompatible, mild, rapid, and transition-metal-free. The proteins myoglobin, ubiquitin, and human carbonic anhydrase I were also successfully functionalized.


Subject(s)
Amino Acids, Aromatic/chemistry , Indoles/chemistry , Peptides/chemistry , Proteins/chemistry , Pyrroles/chemistry , Alkylation , Amino Acids, Aromatic/chemical synthesis , Free Radicals/chemical synthesis , Free Radicals/chemistry , Halogenation , Humans , Indoles/chemical synthesis , Models, Molecular , Peptides/chemical synthesis , Proteins/chemical synthesis , Pyrroles/chemical synthesis
15.
Org Biomol Chem ; 17(47): 10097-10102, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31754683

ABSTRACT

New open-chain and water-soluble hypervalent iodine reagents were synthesized and used for the transfer of fluoroalkyl groups to sulfur atoms of cysteine and cysteine-containing peptides under biocompatible conditions. Some of the reagents displayed excellent reactivity despite their limited stability in aqueous media. In reactions with a short cysteine-containing peptide, in addition to the expected S-fluoroalkylated product, a range of side-products were obtained. The amount of side-products depended on the conditions used (type of reagent, concentration, and pH). With highly activated hypervalent iodine reagents, a new reactive mode was observed - reaction with disulfides to form fluoroalkyl thiols.


Subject(s)
Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Indicators and Reagents/chemistry , Indicators and Reagents/chemical synthesis , Iodine/chemistry , Sulfhydryl Compounds/chemistry , Water/chemistry , Alkylation , Molecular Structure , Solubility
16.
Appl Microbiol Biotechnol ; 103(4): 1737-1753, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30603849

ABSTRACT

ß-N-Acetylhexosaminidases (EC 3.2.1.52) are typical of their dual activity encompassing both N-acetylglucosamine and N-acetylgalactosamine substrates. Here we present the isolation and characterization of a selective ß-N-acetylhexosaminidase from the fungal strain of Aspergillus versicolor. The enzyme was recombinantly expressed in Pichia pastoris KM71H in a high yield and purified in a single step using anion-exchange chromatography. Homologous molecular modeling of this enzyme identified crucial differences in the enzyme active site that may be responsible for its high selectivity for N-acetylglucosamine substrates compared to fungal ß-N-acetylhexosaminidases from other sources. The enzyme was used in a sequential reaction together with a mutant ß-N-acetylhexosaminidase from Talaromyces flavus with an enhanced synthetic capability, affording a bioactive disaccharide bearing an azido functional group. The azido function enabled an elegant multivalent presentation of this disaccharide on an aromatic carrier. The resulting model glycoconjugate is applicable as a selective ligand of galectin-3 - a biomedically attractive human lectin. These results highlight the importance of a general availability of robust and well-defined carbohydrate-active enzymes with tailored catalytic properties for biotechnological and biomedical applications.


Subject(s)
Aspergillus/enzymology , Disaccharides/metabolism , Recombinant Proteins/metabolism , Talaromyces/enzymology , beta-N-Acetylhexosaminidases/metabolism , Catalytic Domain , Chromatography, Ion Exchange , Gene Expression , Models, Molecular , Pichia/genetics , Pichia/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , beta-N-Acetylhexosaminidases/chemistry , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/isolation & purification
17.
Nucleic Acids Res ; 45(15): 8684-8696, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28911118

ABSTRACT

G-quadruplexes can multimerize under certain conditions, but the sequence requirements of such structures are not well understood. In this study, we investigated the ability of all possible variants of the central tetrad in a monomeric, parallel-strand G-quadruplex to form higher-order structures. Although most of these 256 variants existed primarily as monomers under the conditions of our screen, ∼10% formed dimers or tetramers. These structures could form in a wide range of monovalent and divalent metal ions, and folding was highly cooperative in both KCl and MgCl2. As was previously shown for G-quadruplexes that bind GTP and promote peroxidase reactions, G-quadruplexes that form dimers and tetramers have distinct sequence requirements. Some mutants could also form heteromultimers, and a second screen was performed to characterize the sequence requirements of these structures. Taken together, these experiments provide new insights into the sequence requirements and structures of both homomultimeric and heteromultimeric G-quadruplexes.


Subject(s)
DNA/chemistry , G-Quadruplexes , Base Sequence , Cations, Divalent/chemistry , Cations, Divalent/pharmacology , Circular Dichroism , Mutation/physiology , Nucleic Acid Conformation , Polymerization
18.
Angew Chem Int Ed Engl ; 58(38): 13345-13348, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31328344

ABSTRACT

Squaramate-linked 2'-deoxycytidine 5'-O-triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate-linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys-containing peptides. Squaramate-linked DNA formed covalent cross-links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.


Subject(s)
DNA/metabolism , Lysine/metabolism , Nucleotides/metabolism , Peptides/chemistry , Proteins/chemistry , Humans
19.
Rapid Commun Mass Spectrom ; 32(24): 2099-2105, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30230090

ABSTRACT

RATIONALE: In-source decay (ISD) matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry with a 1,5-diaminonaphthalene (1,5-DAN) matrix is used for the structural characterisation of peptides. However, MALDI spectra are intrinsically complicated by the presence of matrix ions, which interfere with the peptide fragments. This may cause false-positive results or reduced sequence coverage. This paper reports investigations of ISD processes in an intermediate pressure MALDI ion source and a protocol for the removal of interfering ions using ion mobility separation (IMS). METHODS: An intermediate pressure MALDI source of a Q-IMS-Q-TOF instrument (Synapt G2) has been employed for the ISD of selected peptides using a 1,5-DAN matrix. RESULTS: Successful coupling of the MALDI source tuned for ISD experiments using IMS is demonstrated. The IMS made it possible to remove interfering matrix ions effectively from the spectra and thus to increase the confidence of spectral interpretation. Extensive fragment series corresponding to N-Cα bond cleavages were observed under optimised conditions; on the other hand, weaker series of ions caused by peptide bond cleavages were prevalent for default conditions and/or the α-hydroxycinnamic acid matrix. CONCLUSIONS: Ion mobility has been used for the elimination of matrix ions. The technique has been applied to top-down sequencing of non-tryptic peptides, such as the human palmitoylated analogue of prolactin-releasing peptide used in recent obesity studies, and human and insect antimicrobial peptides.


Subject(s)
Mass Spectrometry/methods , Peptides/chemistry , Animals , Antimicrobial Cationic Peptides/chemistry , Humans , Insecta , Mass Spectrometry/instrumentation , Prolactin-Releasing Hormone/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
20.
Bioorg Med Chem Lett ; 28(8): 1417-1422, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29463448

ABSTRACT

Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styryl substituted benzoxazinones might comprise novel rhomboid inhibitors. Protease in vitro assays confirmed activity of 2-styryl substituted benzoxazinones against GlpG but not against the soluble serine protease α-chymotrypsin. Furthermore, mass spectrometry analysis demonstrated covalent modification of the catalytic residue Ser201, corroborating the predicted mechanism of inhibition and the formation of an acyl enzyme intermediate. In conclusion, 2-styryl substituted benzoxazinones are a novel rhomboid inhibitor scaffold with ample opportunity for optimization.


Subject(s)
Benzoxazines/chemistry , Serine Proteinase Inhibitors/chemistry , Styrenes/chemistry , Animals , Benzoxazines/chemical synthesis , Catalytic Domain , Cattle , Chymotrypsin/chemistry , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Drosophila/chemistry , Drosophila Proteins/metabolism , Drug Discovery , Endopeptidases/chemistry , Endopeptidases/genetics , Enzyme Assays , Escherichia coli/enzymology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Docking Simulation , Mutation , Serine/chemistry , Serine Proteinase Inhibitors/chemical synthesis , Styrenes/chemical synthesis , Transforming Growth Factor alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL