Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Mol Cell ; 75(2): 267-283.e12, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31202576

ABSTRACT

How spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hotspots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability and are key contributors to the occurrence of genome rearrangements that drive cancer.


Subject(s)
DNA Topoisomerases, Type II/genetics , Genomic Instability/genetics , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Translocation, Genetic/genetics , CCCTC-Binding Factor/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin/chemistry , Chromatin/genetics , Chromosomes/chemistry , Chromosomes/genetics , DNA/genetics , DNA Breaks, Double-Stranded , Humans , Leukemia/genetics , Leukemia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL