Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Immunity ; 56(9): 2152-2171.e13, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37582369

ABSTRACT

Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.


Subject(s)
Induced Pluripotent Stem Cells , Microglia , Humans , Mice , Animals , Gene Regulatory Networks , Brain , Gene Expression Regulation
2.
Cell ; 159(4): 800-13, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417157

ABSTRACT

We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.


Subject(s)
Biological Evolution , Chromosomes, Mammalian , Mice, Inbred C57BL/genetics , Sequence Analysis, DNA , Y Chromosome , Animals , Centromere , Chromosomes, Artificial, Bacterial/genetics , Female , Humans , Male , Phylogeny , Primates/genetics , X Chromosome
3.
Genome Res ; 31(8): 1337-1352, 2021 08.
Article in English | MEDLINE | ID: mdl-34290043

ABSTRACT

Mammalian sex chromosomes carry large palindromes that harbor protein-coding gene families with testis-biased expression. However, there are few known examples of sex-chromosome palindromes conserved between species. We identified 26 palindromes on the human X Chromosome, constituting more than 2% of its sequence, and characterized orthologous palindromes in the chimpanzee and the rhesus macaque using a clone-based sequencing approach that incorporates full-length nanopore reads. Many of these palindromes are missing or misassembled in the current reference assemblies of these species' genomes. We find that 12 human X palindromes have been conserved for at least 25 million years, with orthologs in both chimpanzee and rhesus macaque. Insertions and deletions between species are significantly depleted within the X palindromes' protein-coding genes compared to their noncoding sequence, demonstrating that natural selection has preserved these gene families. The spacers that separate the left and right arms of palindromes are a site of localized structural instability, with seven of 12 conserved palindromes showing no spacer orthology between human and rhesus macaque. Analysis of the 1000 Genomes Project data set revealed that human X-palindrome spacers are enriched for deletions relative to arms and flanking sequence, including a common spacer deletion that affects 13% of human X Chromosomes. This work reveals an abundance of conserved palindromes on primate X Chromosomes and suggests that protein-coding gene families in palindromes (most of which remain poorly characterized) promote X-palindrome survival in the face of ongoing structural instability.


Subject(s)
Selection, Genetic , X Chromosome , Animals , Macaca mulatta/genetics , Male , Pan troglodytes/genetics , Sex Chromosomes , X Chromosome/genetics
4.
Genome Res ; 30(12): 1716-1726, 2020 12.
Article in English | MEDLINE | ID: mdl-33208454

ABSTRACT

Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.


Subject(s)
Sequence Analysis, DNA/veterinary , X Chromosome/genetics , Y Chromosome/genetics , Animals , Cattle , Cell Lineage , Crossing Over, Genetic , Evolution, Molecular , Female , Gene Amplification , Humans , Male , Mice , Organ Specificity , Testis/chemistry
5.
Annu Rev Genet ; 49: 507-27, 2015.
Article in English | MEDLINE | ID: mdl-26442847

ABSTRACT

Mammals have the oldest sex chromosome system known: the mammalian X and Y chromosomes evolved from ordinary autosomes beginning at least 180 million years ago. Despite their shared ancestry, mammalian Y chromosomes display enormous variation among species in size, gene content, and structural complexity. Several unique features of the Y chromosome--its lack of a homologous partner for crossing over, its functional specialization for spermatogenesis, and its high degree of sequence amplification--contribute to this extreme variation. However, amid this evolutionary turmoil many commonalities have been revealed that have contributed to our understanding of the selective pressures driving the evolution and biology of the Y chromosome. Two biological themes have defined Y-chromosome research over the past six decades: testis determination and spermatogenesis. A third biological theme begins to emerge from recent insights into the Y chromosome's roles beyond the reproductive tract--a theme that promises to broaden the reach of Y-chromosome research by shedding light on fundamental sex differences in human health and disease.


Subject(s)
Biological Evolution , Mammals/genetics , Testis/physiology , Y Chromosome/physiology , Animals , Chromosomes, Human, Y , Genetic Diseases, Y-Linked , Hearing Disorders/genetics , Humans , Male , Mice , Spermatogenesis/physiology , Turner Syndrome/genetics
6.
BMC Biol ; 20(1): 133, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35676717

ABSTRACT

BACKGROUND: The mammalian X and Y chromosomes originated from a pair of ordinary autosomes. Over the past ~180 million years, the X and Y have become highly differentiated and now only recombine with each other within a short pseudoautosomal region. While the X chromosome broadly preserved its gene content, the Y chromosome lost ~92% of the genes it once shared with the X chromosome. PRSSLY is a Y-linked gene identified in only a few mammalian species that was thought to be acquired, not ancestral. However, PRSSLY's presence in widely divergent species-bull and mouse-led us to further investigate its evolutionary history. RESULTS: We discovered that PRSSLY is broadly conserved across eutherians and has ancient origins. PRSSLY homologs are found in syntenic regions on the X chromosome in marsupials and on autosomes in more distant animals, including lizards, indicating that PRSSLY was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals. We found that across eutheria, PRSSLY's expression is testis-specific, and, in mouse, it is most robustly expressed in post-meiotic germ cells. The closest paralog to PRSSLY is the autosomal gene PRSS55, which is expressed exclusively in testes, involved in sperm differentiation and migration, and essential for male fertility in mice. Outside of eutheria, in species where PRSSLY orthologs are not Y-linked, we find expression in a broader range of somatic tissues, suggesting that PRSSLY has adopted a germ-cell-specific function in eutherians. Finally, we generated Prssly mutant mice and found that they are fully fertile but produce offspring with a modest female-biased sex ratio compared to controls. CONCLUSIONS: PRSSLY appears to be the first example of a gene that derives from the mammalian ancestral sex chromosomes that was lost from the X and retained on the Y. Although the function of PRSSLY remains to be determined, it may influence the sex ratio by promoting the survival or propagation of Y-bearing sperm.


Subject(s)
Eutheria , Y Chromosome , Animals , Cattle , Eutheria/genetics , Female , Male , Mammals/genetics , Mice , Sex Chromosomes/genetics , X Chromosome/genetics , Y Chromosome/genetics
7.
Nature ; 508(7497): 494-9, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24759411

ABSTRACT

The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.


Subject(s)
Evolution, Molecular , Gene Dosage/genetics , Mammals/genetics , Y Chromosome/genetics , Animals , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Disease , Female , Gene Expression Regulation , Health , Humans , Male , Marsupialia/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Protein Biosynthesis/genetics , Protein Stability , Selection, Genetic/genetics , Sequence Homology , Sex Characteristics , Spermatogenesis/genetics , Testis/metabolism , Transcription, Genetic/genetics , Turner Syndrome/genetics , X Chromosome/genetics
8.
Nature ; 483(7387): 82-6, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22367542

ABSTRACT

The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.


Subject(s)
Chromosomes, Human, Y/genetics , Conserved Sequence/genetics , Evolution, Molecular , Gene Deletion , Macaca mulatta/genetics , Y Chromosome/genetics , Animals , Crossing Over, Genetic/genetics , Gene Amplification/genetics , Humans , In Situ Hybridization, Fluorescence , Male , Models, Genetic , Molecular Sequence Data , Pan troglodytes/genetics , Radiation Hybrid Mapping , Selection, Genetic/genetics , Time Factors
9.
Nature ; 463(7280): 536-9, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20072128

ABSTRACT

The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.


Subject(s)
Chromosomes, Human, Y/genetics , Genes/genetics , Nucleic Acid Conformation , Pan troglodytes/genetics , Y Chromosome/genetics , Animals , Chromosomes, Human, Pair 21/genetics , DNA/chemistry , DNA/genetics , Humans , Male , Molecular Sequence Data , Sequence Homology, Nucleic Acid
10.
Annu Rev Genomics Hum Genet ; 13: 83-108, 2012.
Article in English | MEDLINE | ID: mdl-22483277

ABSTRACT

In mammals, the Y chromosome plays the pivotal role in male sex determination and is essential for normal sperm production. Yet only three Y chromosomes have been completely sequenced to date--those of human, chimpanzee, and rhesus macaque. While Y chromosomes are notoriously difficult to sequence owing to their highly repetitive genomic landscapes, these dedicated sequencing efforts have generated tremendous yields in medical, biological, and evolutionary insight. Knowledge of the complex structural organization of the human Y chromosome and a complete catalog of its gene content have provided a deeper understanding of the mechanisms that generate disease-causing mutations and large-scale rearrangements. Variation among human Y-chromosome sequences has been an invaluable tool for understanding relationships among human populations. Comprehensive comparisons of the human Y-chromosome sequence with those of other primates have illuminated aspects of Y-chromosome evolutionary dynamics over much longer timescales (>25 million years compared with 100,000 years). The future sequencing of additional Y chromosomes will provide a basis for a more comprehensive understanding of the evolution of Y chromosomes and their roles in reproductive biology.


Subject(s)
Chromosomes, Human, Y/genetics , Animals , Chromosome Mapping , Evolution, Molecular , Genes, sry , Heterochromatin/genetics , Humans , Infertility, Male/genetics , Male , Models, Genetic , Mutation , Sequence Analysis, DNA , Spermatogenesis/genetics
11.
Bioessays ; 34(12): 1035-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23055411

ABSTRACT

Studies of Y chromosome evolution often emphasize gene loss, but this loss has been counterbalanced by addition of new genes. The DAZ genes, which are critical to human spermatogenesis, were acquired by the Y chromosome in the ancestor of Old World monkeys and apes. We and our colleagues recently sequenced the rhesus macaque Y chromosome, and comparison of this sequence to human and chimpanzee enables us to reconstruct much of the evolutionary history of DAZ. We report that DAZ arrived on the Y chromosome about 38 million years ago via the transposition of at least 1.1 megabases of autosomal DNA. This transposition also brought five additional genes to the Y chromosome, but all five genes were subsequently lost through mutation or deletion. As the only surviving gene, DAZ experienced extensive restructuring, including intragenic amplification and gene duplication, and has been the target of positive selection in the chimpanzee lineage. Editor's suggested further reading in BioEssays Should Y stay or should Y go: The evolution of non-recombining sex chromosomes Abstract.


Subject(s)
Evolution, Molecular , Macaca mulatta/genetics , RNA-Binding Proteins/genetics , Y Chromosome , Animals , Binding Sites , Cercopithecidae/genetics , Chromosomes, Human, Y , Deleted in Azoospermia 1 Protein , Gene Duplication , Hominidae/genetics , Humans , Male , Pan troglodytes/genetics , Protein Structure, Tertiary , RNA-Binding Proteins/metabolism , Selection, Genetic , Sequence Analysis, DNA
12.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562807

ABSTRACT

Recent in vitro studies of human sex chromosome aneuploidy showed that the Xi ("inactive" X) and Y chromosomes broadly modulate autosomal and Xa ("active" X) gene expression in two cell types. We tested these findings in vivo in two additional cell types. Using linear modeling in CD4+ T cells and monocytes from individuals with one to three X chromosomes and zero to two Y chromosomes, we identified 82 sex-chromosomal and 344 autosomal genes whose expression changed significantly with Xi and/or Y dosage in vivo . Changes in sex-chromosomal expression were remarkably constant in vivo and in vitro across all four cell types examined. In contrast, autosomal responses to Xi and/or Y dosage were largely cell-type-specific, with up to 2.6-fold more variation than sex-chromosomal responses. Targets of the X- and Y-encoded transcription factors ZFX and ZFY accounted for a significant fraction of these autosomal responses both in vivo and in vitro . We conclude that the human Xi and Y transcriptomes are surprisingly robust and stable across the four cell types examined, yet they modulate autosomal and Xa genes - and cell function - in a cell-type-specific fashion. These emerging principles offer a foundation for exploring the wide-ranging regulatory roles of the sex chromosomes across the human body.

13.
Cell Genom ; 4(1): 100462, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38190107

ABSTRACT

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors-ZFX and ZFY-encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.


Subject(s)
Transcription Factors , Y Chromosome , Humans , Male , Female , Transcription Factors/genetics , Chromosomes, Human, X/genetics , Sex Chromosome Aberrations , Gene Expression/genetics
14.
Cell Genom ; 3(2): 100259, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36819663

ABSTRACT

The "inactive" X chromosome (Xi) has been assumed to have little impact, in trans, on the "active" X (Xa). To test this, we quantified Xi and Xa gene expression in individuals with one Xa and zero to three Xis. Our linear modeling revealed modular Xi and Xa transcriptomes and significant Xi-driven expression changes for 38% (162/423) of expressed X chromosome genes. By integrating allele-specific analyses, we found that modulation of Xa transcript levels by Xi contributes to many of these Xi-driven changes (≥121 genes). By incorporating metrics of evolutionary constraint, we identified 10 X chromosome genes most likely to drive sex differences in common disease and sex chromosome aneuploidy syndromes. We conclude that human X chromosomes are regulated both in cis, through Xi-wide transcriptional attenuation, and in trans, through positive or negative modulation of individual Xa genes by Xi. The sum of these cis and trans effects differs widely among genes.

15.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333288

ABSTRACT

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex-chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors - ZFX and ZFY - encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.

16.
PLoS One ; 17(6): e0269692, 2022.
Article in English | MEDLINE | ID: mdl-35700171

ABSTRACT

The reference sequence of structurally complex regions can only be obtained through a highly accurate clone-based approach that we call Single-Haplotype Iterative Mapping and Sequencing (SHIMS). In recent years, improvements to SHIMS have reduced the cost and time required by two orders of magnitude, but internally repetitive clones still require extensive manual effort to transform draft assemblies into reference-quality finished sequences. Here we describe SHIMS 3.0, using ultra-long nanopore reads to augment the Illumina data from SHIMS 2.0 assemblies and resolve internally repetitive structures. This greatly minimizes the need for manual finishing of Illumina-based draft assemblies, allowing a small team with no prior finishing experience to sequence challenging targets with high accuracy. This protocol proceeds from clone-picking to finished assemblies in 2 weeks for about $80 (USD) per clone. We recently used this protocol to produce reference sequence of structurally complex palindromes on chimpanzee and rhesus macaque X chromosomes. Our protocol provides access to structurally complex regions that would otherwise be inaccessible from whole-genome shotgun data or require an impractical amount of manual effort to generate an accurate assembly.


Subject(s)
Nanopores , Animals , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Imidoesters , Macaca mulatta , Sequence Analysis, DNA/methods
17.
Nature ; 437(7055): 100-3, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16136134

ABSTRACT

The human Y chromosome, transmitted clonally through males, contains far fewer genes than the sexually recombining autosome from which it evolved. The enormity of this evolutionary decline has led to predictions that the Y chromosome will be completely bereft of functional genes within ten million years. Although recent evidence of gene conversion within massive Y-linked palindromes runs counter to this hypothesis, most unique Y-linked genes are not situated in palindromes and have no gene conversion partners. The 'impending demise' hypothesis thus rests on understanding the degree of conservation of these genes. Here we find, by systematically comparing the DNA sequences of unique, Y-linked genes in chimpanzee and human, which diverged about six million years ago, evidence that in the human lineage, all such genes were conserved through purifying selection. In the chimpanzee lineage, by contrast, several genes have sustained inactivating mutations. Gene decay in the chimpanzee lineage might be a consequence of positive selection focused elsewhere on the Y chromosome and driven by sperm competition.


Subject(s)
Chromosomes, Human, Y/genetics , Conserved Sequence/genetics , Evolution, Molecular , Genetic Linkage/genetics , Pan troglodytes/genetics , Y Chromosome/genetics , Animals , Euchromatin/genetics , Humans , Introns/genetics , Male , Models, Genetic , Molecular Sequence Data , Phylogeny , Pseudogenes/genetics , Sequence Alignment , Sequence Analysis, DNA , X Chromosome/genetics
20.
Science ; 365(6450)2019 07 19.
Article in English | MEDLINE | ID: mdl-31320509

ABSTRACT

Sex differences abound in human health and disease, as they do in other mammals used as models. The extent to which sex differences are conserved at the molecular level across species and tissues is unknown. We surveyed sex differences in gene expression in human, macaque, mouse, rat, and dog, across 12 tissues. In each tissue, we identified hundreds of genes with conserved sex-biased expression-findings that, combined with genomic analyses of human height, explain ~12% of the difference in height between females and males. We surmise that conserved sex biases in expression of genes otherwise operating equivalently in females and males contribute to sex differences in traits. However, most sex-biased expression arose during the mammalian radiation, which suggests that careful attention to interspecies divergence is needed when modeling human sex differences.


Subject(s)
Gene Expression , Sex Characteristics , Animals , Base Sequence , Binding Sites , Conserved Sequence , Dogs , Evolution, Molecular , Female , Humans , Macaca fascicularis , Male , Mice , Rats , Sex Factors , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL