Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Plant Physiol ; 192(2): 927-944, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36946208

ABSTRACT

Lysosome-related organelles (LROs) are a class of heterogeneous organelles conserved in eukaryotes that primarily play a role in storage and secretion. An important function of LROs is to mediate metal homeostasis. Chlamydomonas reinhardtii is a model organism for studying metal ion metabolism; however, structural and functional analyses of LROs in C. reinhardtii are insufficient. Here, we optimized a method for purifying these organelles from 2 populations of cells: stationary phase or overloaded with iron. The morphology, elemental content, and lysosomal activities differed between the 2 preparations, even though both have phosphorus and metal ion storage functions. LROs in stationary phase cells had multiple non-membrane-bound polyphosphate granules to store phosphorus. Those in iron-overloaded cells were similar to acidocalcisomes (ACs), which have a boundary membrane and contain 1 or 2 large polyphosphate granules to store more phosphorus. We established a method for quantifying the capacity of LROs to sequester individual trace metals. Based on a comparative proteomic analysis of these 2 types of LROs, we present a comprehensive AC proteome and identified 113 putative AC proteins. The methods and protein inventories provide a framework for studying the biogenesis and modification of LROs and the mechanisms by which they participate in regulating metal ion metabolism.


Subject(s)
Chlamydomonas , Chlamydomonas/metabolism , Proteomics , Organelles/metabolism , Lysosomes/metabolism , Polyphosphates/metabolism , Phosphorus/metabolism
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33879572

ABSTRACT

The acidocalcisome is an acidic organelle in the cytosol of eukaryotes, defined by its low pH and high calcium and polyphosphate content. It is visualized as an electron-dense object by transmission electron microscopy (TEM) or described with mass spectrometry (MS)-based imaging techniques or multimodal X-ray fluorescence microscopy (XFM) based on its unique elemental composition. Compared with MS-based imaging techniques, XFM offers the additional advantage of absolute quantification of trace metal content, since sectioning of the cell is not required and metabolic states can be preserved rapidly by either vitrification or chemical fixation. We employed XFM in Chlamydomonas reinhardtii to determine single-cell and organelle trace metal quotas within algal cells in situations of trace metal overaccumulation (Fe and Cu). We found up to 70% of the cellular Cu and 80% of Fe sequestered in acidocalcisomes in these conditions and identified two distinct populations of acidocalcisomes, defined by their unique trace elemental makeup. We utilized the vtc1 mutant, defective in polyphosphate synthesis and failing to accumulate Ca, to show that Fe sequestration is not dependent on either. Finally, quantitation of the Fe and Cu contents of individual cells and compartments via XFM, over a range of cellular metal quotas created by nutritional and genetic perturbations, indicated excellent correlation with bulk data from corresponding cell cultures, establishing a framework to distinguish the nutritional status of single cells.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Phototrophic Processes/physiology , Trace Elements/metabolism , Chlamydomonas/metabolism , Homeostasis , Lysosomes/metabolism , Microscopy, Electron, Transmission/methods , Organelles/metabolism , Single-Cell Analysis/methods , Trace Elements/analysis
3.
Plant J ; 111(4): 995-1014, 2022 08.
Article in English | MEDLINE | ID: mdl-35699388

ABSTRACT

Even subtle modifications in growth conditions elicit acclimation responses affecting the molecular and elemental makeup of organisms, both in the laboratory and in natural habitats. We systematically explored the effect of temperature, pH, nutrient availability, culture density, and access to CO2 and O2 in laboratory-grown algal cultures on growth rate, the ionome, and the ability to accumulate Fe. We found algal cells accumulate Fe in alkaline conditions, even more so when excess Fe is present, coinciding with a reduced growth rate. Using a combination of Fe-specific dyes, X-ray fluorescence microscopy, and NanoSIMS, we show that the alkaline-accumulated Fe was intracellularly sequestered into acidocalcisomes, which are localized towards the periphery of the cells. At high photon flux densities, Zn and Ca specifically over-accumulate, while Zn alone accumulates at low temperatures. The impact of aeration was probed by reducing shaking speeds and changing vessel fill levels; the former increased the Cu quota of cultures, the latter resulted in a reduction in P, Ca, and Mn at low fill levels. Trace element quotas were also affected in the stationary phase, where specifically Fe, Cu, and Zn accumulate. Cu accumulation here depends inversely on the Fe concentration of the medium. Individual laboratory strains accumulate Ca, P, and Cu to different levels. All together, we identified a set of specific changes to growth rate, elemental composition, and the capacity to store Fe in response to subtle differences in culturing conditions of Chlamydomonas, affecting experimental reproducibility. Accordingly, we recommend that these variables be recorded and reported as associated metadata.


Subject(s)
Chlamydomonas , Trace Elements , Reproducibility of Results
4.
Proc Natl Acad Sci U S A ; 114(13): 3421-3426, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28289188

ABSTRACT

A heme-dependent conformational rearrangement of the C-terminal domain of heme binding protein (PhuS) is required for interaction with the iron-regulated heme oxygenase (HemO). Herein, we further investigate the underlying mechanism of this conformational rearrangement and its implications for heme transfer via site-directed mutagenesis, resonance Raman (RR), hydrogen-deuterium exchange MS (HDX-MS) methods, and molecular dynamics (MD). HDX-MS revealed that the apo-PhuS C-terminal α6/α7/α8-helices are largely unstructured, whereas the apo-PhuS H212R variant showed an increase in structure within these regions. The increased rate of heme association with apo-PhuS H212R compared with the WT and lack of a detectable five-coordinate high-spin (5cHS) heme intermediate are consistent with a more folded and less dynamic C-terminal domain. HDX-MS and MD of holo-PhuS indicate an overall reduction in molecular flexibility throughout the protein, with significant structural rearrangement and protection of the heme binding pocket. We observed slow cooperative unfolding/folding events within the C-terminal helices of holo-PhuS and the N-terminal α1/α2-helices that are dampened or eliminated in the holo-PhuS H212R variant. Chemical cross-linking and MALDI-TOF MS mapped these same regions to the PhuS:HemO protein-protein interface. We previously proposed that the protein-protein interaction induces conformational rearrangement, promoting a ligand switch from His-209 to His-212 and triggering heme release to HemO. The reduced conformational freedom of holo-PhuS H212R combined with the increase in entropy and decrease in heme transfer on interaction with HemO further support this model. This study provides significant insight into the role of protein dynamics in heme binding and release in bacterial heme transport proteins.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Hemeproteins/chemistry , Hemeproteins/metabolism , Pseudomonas aeruginosa/metabolism , Allosteric Regulation , Bacterial Proteins/genetics , Carrier Proteins/genetics , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/genetics , Heme-Binding Proteins , Hemeproteins/genetics , Ligands , Protein Binding , Protein Structure, Secondary , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics
5.
Anal Chem ; 89(1): 854-861, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27936597

ABSTRACT

Scrapie is a prion (PrPSc) disease of sheep. The incubation period of sheep scrapie is strongly influenced by polymorphisms at positions 136, 154, and 171 of a sheep's normal cellular prion protein (PrPC). Chymotrypsin was used to digest sheep recombinant PrP to identify a set of characteristic peptides [M132LGSXMSRPL141 (X = A or V), Y153XENMY158 (X,= H or R), and Y166RPVDXY172 (X = H, K, Q, or R)] that could be used to detect and quantitate polymorphisms at positions 136, 154, and 171 of sheep PrPC or PrPSc. These peptides were used to develop a multiple reaction monitoring method (MRM) to detect the amounts of a particular polymorphism in a sample of PrPSc isolated from sheep heterozygous for their PrPC proteins. The limit of detection for these peptides was less than 50 attomole. Spinal cord tissue from heterozygous (ARQ/VRQ or ARH/ARQ) scrapie-infected Rasa Aragonesa sheep was analyzed using this MRM method. Both sets of heterozygotes show the presence of both polymorphisms in PrPSc. This was true for samples containing both proteinase K (PK)-sensitive and PK-resistant PrPSc and samples containing only the PK-resistant PrPSc. These results show that heterozygous animals contain PrPSc that is composed of significant amounts of both PrP polymorphisms.


Subject(s)
Polymorphism, Genetic/genetics , Prions/genetics , Scrapie/genetics , Animals , Prions/analysis , Sheep , Spinal Cord/chemistry
6.
Anal Chem ; 86(10): 4698-706, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24761992

ABSTRACT

Shiga-like toxins (verotoxins) are a class of AB5 holotoxins that are primarily responsible for the virulence associated with Shiga-like toxin producing Escherichia coli (STEC) infections. The holotoxins are composed of a pentamer of identical subunits (B subunit) responsible for delivering the catalytic subunit (A subunit) to a host cell and facilitating endocytosis of the toxin into the cell. The B subunits are not associated with toxicity. We developed a multiple reaction monitoring method based on analyzing conserved peptides, derived from the tryptic digestion of the B subunits. Stable-isotope-labeled analogues were prepared and used as internal standards to identify and quantify these characteristic peptides. We were able to detect and quantify Shiga toxins (Stx), Shiga-like toxin type 1 (Stx1) and type 2 (Stx2) subtypes, and to distinguish among most of the known subtypes. The limit of detection for digested pure standards was in the low attomole range/injection (~10 attomoles), which corresponded to a concentration of 1.7 femtomol/mL. A matrix effect was observed when dilute samples were digested in the buffer, Luria broth, or mouse plasma (LOD ~ 30 attomol/injection = 5 femtomol/mL). In addition, we determined that the procedures necessary to perform our mass spectrometry-based analysis completely inactivate the toxins present in the sample. This is a safe and effective method of detecting and quantitating Stx, Stx1, and Stx2, since it does not require the use of intact toxins.


Subject(s)
Shiga Toxins/analysis , Amino Acid Sequence , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Hydrolysis , Molecular Sequence Data , Shiga Toxin 1/analysis , Shiga Toxin 1/toxicity , Shiga Toxin 2/analysis , Shiga Toxin 2/toxicity , Shiga Toxins/toxicity , Trypsin/chemistry , Vero Cells
7.
Biochemistry ; 52(12): 2139-47, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23458153

ABSTRACT

We employed a sensitive mass spectrometry-based method to deconstruct, confirm, and quantitate the prions present in elk naturally infected with chronic wasting disease and sheep naturally infected with scrapie. We used this approach to study the oxidation of a methionine at position 216 (Met216), because this oxidation (MetSO216) has been implicated in prion formation. Three polymorphisms (Ile218, Val218, and Thr218) of sheep recombinant prion protein were prepared. Our analysis showed the novel result that the proportion of MetSO216 was highly dependent upon the amino acid residue at position 218 (I > V > T), indicating that Ile218 in sheep and elk prion protein (PrP) renders the Met216 intrinsically more susceptible to oxidation than the Val218 or Thr218 analogue. We were able to quantitate the prions in the attomole range. The presence of prions was verified by the detection of two confirmatory peptides: GENFTETDIK (sheep and elk) and ESQAYYQR (sheep) or ESEAYYQR (elk). This approach required much smaller amounts of tissue (600 µg) than traditional methods of detection (enzyme-linked immunosorbent assay, Western blot, and immunohistochemical analysis) (60 mg). In sheep and elk, a normal cellular prion protein containing MetSO216 is not actively recruited and converted to prions, although we observed that this Met216 is intrinsically more susceptible to oxidation.


Subject(s)
Prions/chemistry , Amino Acid Sequence , Animals , Deer/genetics , Deer/metabolism , Methionine/chemistry , Oxidation-Reduction , Polymorphism, Genetic , PrPC Proteins/biosynthesis , PrPC Proteins/chemistry , PrPC Proteins/genetics , PrPSc Proteins/biosynthesis , PrPSc Proteins/chemistry , PrPSc Proteins/genetics , Prions/biosynthesis , Prions/genetics , Scrapie/genetics , Scrapie/metabolism , Sheep/genetics , Sheep/metabolism , Tandem Mass Spectrometry , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL