Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Gastroenterology ; 165(4): 891-908.e14, 2023 10.
Article in English | MEDLINE | ID: mdl-37263303

ABSTRACT

BACKGROUND & AIMS: As pancreatic ductal adenocarcinoma (PDAC) continues to be recalcitrant to therapeutic interventions, including poor response to immunotherapy, albeit effective in other solid malignancies, a more nuanced understanding of the immune microenvironment in PDAC is urgently needed. We aimed to unveil a detailed view of the immune micromilieu in PDAC using a spatially resolved multimodal single-cell approach. METHODS: We applied single-cell RNA sequencing, spatial transcriptomics, multiplex immunohistochemistry, and mass cytometry to profile the immune compartment in treatment-naïve PDAC tumors and matched adjacent normal pancreatic tissue, as well as in the systemic circulation. We determined prognostic associations of immune signatures and performed a meta-analysis of the immune microenvironment in PDAC and lung adenocarcinoma on single-cell level. RESULTS: We provided a spatially resolved fine map of the immune landscape in PDAC. We substantiated the exhausted phenotype of CD8 T cells and immunosuppressive features of myeloid cells, and highlighted immune subsets with potentially underappreciated roles in PDAC that diverged from immune populations within adjacent normal areas, particularly CD4 T cell subsets and natural killer T cells that are terminally exhausted and acquire a regulatory phenotype. Differential analysis of immune phenotypes in PDAC and lung adenocarcinoma revealed the presence of extraordinarily immunosuppressive subtypes in PDAC, along with a distinctive immune checkpoint composition. CONCLUSIONS: Our study sheds light on the multilayered immune dysfunction in PDAC and presents a holistic view of the immune landscape in PDAC and lung adenocarcinoma, providing a comprehensive resource for functional studies and the exploration of therapeutically actionable targets in PDAC.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Pancreatic Ductal , Immune System Diseases , Pancreatic Neoplasms , Humans , Multiomics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/drug therapy , Single-Cell Analysis , Tumor Microenvironment , Pancreatic Neoplasms
2.
Int J Legal Med ; 130(5): 1181-4, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26972692

ABSTRACT

In standard forensic DNA analysis, single base mutations within short tandem repeats (STR) mostly escape detection. In this study, high-resolution DNA melting (HRM) is compared to minisequencing and Sanger sequencing as to determine the most suitable method for detection of a G to C mutation within a repetitive DNA sequence, the STR system DXS10161. It shows an ATG/ATC polymorphism surrounded by a variable number of (TATC) and (ATCT) motifs. Neutral base changes like G:C to C:G result in very low differences in the melting temperature (T m) of the PCR amplicons. By enhanced resolution of fluorescence vs. temperature in HRM, the technique showed to be suitable for detecting a G to C transversion in this repetitive DNA sequence context. Compared to minisequencing, HRM is more time- and cost-effective. Results were confirmed by Sanger sequencing.


Subject(s)
Nucleic Acid Denaturation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Female , Forensic Genetics , Genotype , Humans , Male , Microsatellite Repeats
SELECTION OF CITATIONS
SEARCH DETAIL