Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Pflugers Arch ; 474(8): 829-840, 2022 08.
Article in English | MEDLINE | ID: mdl-35732960

ABSTRACT

Hypertension is one of the leading causes of premature death in humans and exhibits a complex aetiology including environmental and genetic factors. Mutations within the glucocorticoid receptor (GR) can cause glucocorticoid resistance, which is characterized by several clinical features like hypercortisolism, hypokalaemia, adrenal hyperplasia and hypertension. Altered glucocorticoid receptor signalling further affects sodium and potassium homeostasis as well as blood pressure regulation and cell proliferation and differentiation that influence organ development and function. In salt-sensitive hypertension, excessive renal salt transport and sympathetic nervous system stimulation may occur simultaneously, and, thus, both the mineralocorticoid receptor (MR) and the GR-signalling may be implicated or even act interdependently. This review focuses on identified GR mutations in human primary generalized glucocorticoid resistance (PGGR) patients and their related clinical phenotype with specific emphasis on adrenal gland hyperplasia and hypertension. We compare these findings to mouse and rat mutants harbouring genetically engineered mutations to further dissect the cause and/or the consequence of clinical features which are common or different.


Subject(s)
Hypertension , Receptors, Glucocorticoid , Adrenal Glands , Animals , Glucocorticoids , Humans , Hyperplasia/genetics , Hypertension/etiology , Metabolism, Inborn Errors , Mice , Mutation , Rats , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/genetics , Receptors, Mineralocorticoid/genetics
2.
Curr Opin Nephrol Hypertens ; 31(5): 493-501, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35894285

ABSTRACT

PURPOSE OF REVIEW: This review provides an up-to-date understanding about the regulation of epithelial sodium channel (ENaC) expression and function. In particular, we will focus on its implication in renal Na+ and K+ handling and control of blood pressure using transgenic animal models. RECENT FINDINGS: In kidney, the highly amiloride-sensitive ENaC maintains whole body Na+ homeostasis by modulating Na+ transport via epithelia. This classical role is mostly confirmed using genetically engineered animal models. Recently identified key signaling pathways that regulate ENaC expression and function unveiled some nonclassical and unexpected channel regulatory processes. If aberrant, these dysregulated mechanisms may also result in the development of salt-dependent hypertension.The purpose of this review is to highlight the most recent findings in renal ENaC regulation and function, in considering data obtained from animal models. SUMMARY: Increased ENaC-mediated Na+ transport is a prerequisite for salt-dependent forms of hypertension. To treat salt-sensitive hypertension it is crucial to fully understand the function and regulation of ENaC.


Subject(s)
Epithelial Sodium Channels , Hypertension , Animals , Blood Pressure/physiology , Epithelial Sodium Channels/metabolism , Humans , Mice , Mice, Transgenic , Sodium/metabolism , Sodium Chloride, Dietary/metabolism
3.
J Am Soc Nephrol ; 32(12): 3130-3145, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34615708

ABSTRACT

BACKGROUND: Active sodium reabsorption is the major factor influencing renal oxygen consumption and production of reactive oxygen species (ROS). Increased sodium reabsorption uses more oxygen, which may worsen medullary hypoxia and produce more ROS via enhanced mitochondrial ATP synthesis. Both mechanisms may activate the hypoxia-inducible factor (HIF) pathway. Because the collecting duct is exposed to low oxygen pressure and variations of active sodium transport, we assessed whether the HIF pathway controls epithelial sodium channel (ENaC)-dependent sodium transport. METHODS: We investigated HIF's effect on ENaC expression in mpkCCD cl4 cells (a model of collecting duct principal cells) using real-time PCR and western blot and ENaC activity by measuring amiloride-sensitive current. We also assessed the effect of hypoxia and sodium intake on abundance of kidney sodium transporters in wild-type and inducible kidney tubule-specific Hif1α knockout mice. RESULTS: In cultured cells, activation of the HIF pathway by dimethyloxalylglycine or hypoxia inhibited sodium transport and decreased expression of ß ENaC and γ ENaC, as well as of Na,K-ATPase. HIF1 α silencing increased ß ENaC and γ ENaC expression and stimulated sodium transport. A constitutively active mutant of HIF1 α produced the opposite effect. Aldosterone and inhibition of the mitochondrial respiratory chain slowly activated the HIF pathway, suggesting that ROS may also activate HIF. Decreased γ ENaC abundance induced by hypoxia in normal mice was abolished in Hif1α knockout mice. Similarly, Hif1α knockout led to increased γ ENaC abundance under high sodium intake. CONCLUSIONS: This study reveals that γ ENaC expression and activity are physiologically controlled by the HIF pathway, which may represent a negative feedback mechanism to preserve oxygenation and/or prevent excessive ROS generation under increased sodium transport.


Subject(s)
Kidney Tubules, Collecting , Sodium, Dietary , Mice , Animals , Epithelial Sodium Channels/metabolism , Kidney Tubules, Collecting/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Reactive Oxygen Species/metabolism , Sodium/metabolism , Sodium, Dietary/pharmacology , Mice, Knockout
4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806266

ABSTRACT

The kidney is strongly dependent on a continuous oxygen supply, and is conversely highly sensitive to hypoxia. Controlled oxygen gradients are essential for renal control of solutes and urine-concentrating mechanisms, which also depend on various hormones including aldosterone. The cortical collecting duct (CCD) is part of the aldosterone-sensitive distal nephron and possesses a key function in fine-tuned distal salt handling. It is well known that aldosterone is consistently decreased upon hypoxia. Furthermore, a recent study reported a hypoxia-dependent down-regulation of sodium currents within CCD cells. We thus investigated the possibility that cells from the cortical collecting duct are responsive to hypoxia, using the mouse cortical collecting duct cell line mCCDcl1 as a model. By analyzing the hypoxia-dependent transcriptome of mCCDcl1 cells, we found a large number of differentially-expressed genes (3086 in total logFC< −1 or >1) following 24 h of hypoxic conditions (0.2% O2). A gene ontology analysis of the differentially-regulated pathways revealed a strong decrease in oxygen-linked processes such as ATP metabolic functions, oxidative phosphorylation, and cellular and aerobic respiration, while pathways associated with hypoxic responses were robustly increased. The most pronounced regulated genes were confirmed by RT-qPCR. The low expression levels of Epas1 under both normoxic and hypoxic conditions suggest that Hif-1α, rather than Hif-2α, mediates the hypoxic response in mCCDcl1 cells. Accordingly, we generated shRNA-mediated Hif-1α knockdown cells and found Hif-1α to be responsible for the hypoxic induction of established hypoxically-induced genes. Interestingly, we could show that following shRNA-mediated knockdown of Esrra, Hif-1α protein levels were unaffected, but the gene expression levels of Egln3 and Serpine1 were significantly reduced, indicating that Esrra might contribute to the hypoxia-mediated expression of these and possibly other genes. Collectively, mCCDcl1 cells display a broad response to hypoxia and represent an adequate cellular model to study additional factors regulating the response to hypoxia.


Subject(s)
Aldosterone , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Kidney Cortex , Receptors, Estrogen , Animals , Cell Hypoxia , Cell Line , Gene Expression Regulation , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Cortex/metabolism , Kidney Cortex/physiology , Mice , Oxygen/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Estrogen/metabolism , ERRalpha Estrogen-Related Receptor
5.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743186

ABSTRACT

The serine protease prostasin (CAP1/Prss8, channel-activating protease-1) is a confirmed in vitro and in vivo activator of the epithelial sodium channel ENaC. To test whether proteolytic activity or CAP1/Prss8 abundance itself are required for ENaC activation in the kidney, we studied animals either hetero- or homozygous mutant at serine 238 (S238A; Prss8cat/+ and Prss8cat/cat), and renal tubule-specific CAP1/Prss8 knockout (Prss8PaxLC1) mice. When exposed to varying Na+-containing diets, no changes in Na+ and K+ handling and only minor changes in the expression of Na+ and K+ transporting protein were found in both models. Similarly, the α- or γENaC subunit cleavage pattern did not differ from control mice. On standard and low Na+ diet, Prss8cat/+ and Prss8cat/cat mice exhibited standard plasma aldosterone levels and unchanged amiloride-sensitive rectal potential difference indicating adapted ENaC activity. Upon Na+ deprivation, mice lacking the renal CAP1/Prss8 expression (Prss8PaxLC1) exhibit significantly decreased plasma aldosterone and lower K+ levels but compensate by showing significantly higher plasma renin activity. Our data clearly demonstrated that the catalytic activity of CAP1/Prss8 is dispensable for proteolytic ENaC activation. CAP1/Prss8-deficiency uncoupled ENaC activation from its aldosterone dependence, but Na+ homeostasis is maintained through alternative pathways.


Subject(s)
Aldosterone , Sodium , Animals , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Kidney/metabolism , Mice , Oligopeptides , Serine Endopeptidases , Sodium/metabolism
6.
Am J Physiol Renal Physiol ; 321(3): F257-F268, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34251271

ABSTRACT

The epithelial Na+ channel (ENaC) constitutes the rate-limiting step for Na+ absorption in the aldosterone-sensitive distal nephron (ASDN) comprising the late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). Previously, we demonstrated that ENaC activity in the DCT2/CNT transition zone is constitutively high and independent of aldosterone, in contrast to its aldosterone dependence in the late CNT/initial cortical CD (CCD). The mineralocorticoid receptor (MR) is expressed in the entire ASDN. Its activation by glucocorticoids is prevented through 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2) abundantly expressed in the late but probably not early part of the ASDN. We hypothesized that ENaC function in the early part of the ASDN is aldosterone independent but may depend on MR activated by glucocorticoids due to low 11ß-HSD2 abundance. To test this hypothesis, we used doxycycline-inducible nephron-specific MR-deficient [MR knockout (KO)] mice. Whole cell ENaC currents were investigated in isolated nephron fragments from the DCT2/CNT or CNT/CCD transition zones using the patch-clamp technique. ENaC activity was detectable in the CNT/CCD of control mice but absent or barely detectable in the majority of CNT/CCD preparations from MR KO mice. Importantly, ENaC currents in the DCT2/CNT were greatly reduced in MR KO mice compared with ENaC currents in the DCT2/CNT of control mice. Immunofluorescence for 11ß-HSD2 was abundant in the CCD, less prominent in the CNT, and very low in the DCT2. We conclude that MR is critically important for maintaining aldosterone-independent ENaC activity in the DCT2/CNT. Aldosterone-independent MR activation is probably mediated by glucocorticoids due to low expression of 11ß-HSD2.NEW & NOTEWORTHY Using a mouse model with inducible nephron-specific mineralocorticoid receptor (MR) deficiency, we demonstrated that MR is not only critical for maintaining aldosterone-dependent ENaC activity in CNT/CCD but also for aldosterone-independent ENaC activity in DCT2/CNT. Furthermore, we demonstrated that cells of this latter nephron segment express little 11ß-HSD2, which probably allows glucocorticoids to stimulate MR, resulting in aldosterone-independent ENaC activity in DCT2/CNT. This site-specific ENaC regulation has physiologically relevant implications for renal sodium and potassium homeostasis.


Subject(s)
Aldosterone/pharmacokinetics , Kidney Tubules, Collecting/metabolism , Potassium/metabolism , Receptors, Mineralocorticoid/drug effects , Receptors, Mineralocorticoid/metabolism , Aldosterone/metabolism , Animals , Epithelial Sodium Channels/metabolism , Mice , Nephrons/metabolism , Sodium/metabolism , Sodium, Dietary/metabolism
7.
J Am Soc Nephrol ; 31(5): 1009-1023, 2020 05.
Article in English | MEDLINE | ID: mdl-32245797

ABSTRACT

BACKGROUND: Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient. METHODS: To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule-specific knockout mice lacking ENaC subunits to assess the ENaC's effect on claudin-8 expression. RESULTS: Overexpression or silencing of the ENaC γ-subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule-specific ENaC γ-subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC ß-subunit or α-subunit silencing or kidney tubule-specific ß-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance. CONCLUSIONS: Our data reveal the specific coupling between ENaC γ-subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.


Subject(s)
Claudins/metabolism , Epithelial Sodium Channels/metabolism , Gene Expression Regulation , Kidney Tubules, Collecting/metabolism , Sodium/metabolism , Amiloride/analogs & derivatives , Amiloride/pharmacology , Animals , Biological Transport , Cells, Cultured , Chlorides/metabolism , Claudins/deficiency , Claudins/genetics , Epithelial Sodium Channels/deficiency , Epithelial Sodium Channels/genetics , Gene Silencing , Ion Transport , Mice , Mice, Knockout , RNA, Messenger/biosynthesis , Recombinant Proteins/metabolism , Transduction, Genetic
8.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948014

ABSTRACT

Mutations within the glucocorticoid receptor (GR) gene locus lead to glucocorticoid resistance which is characterized by several clinical symptoms such as adrenal gland hyperplasia and salt-sensitive hypertension, although the underlying mechanisms are still unknown. We studied GR haploinsufficient (GR+/-) Sprague Dawley rats which, on a standard diet, showed significantly increased plasma aldosterone and corticosterone levels and an adrenocortex hyperplasia accompanied by a normal systolic blood pressure. Following a high salt diet, these rats developed salt-sensitive hypertension and maintained elevated enzyme-soluble epoxide hydrolase (sEH) in adrenal glands, while sEH was significantly decreased in wild-type rats. Furthermore, GR+/- rats showed dysregulation of the equilibrated linoleic and arachidonic acid pathways, with a significant increase of less active metabolites such as 8,9-DiHETrE. In Sprague Dawley rats, GR haploinsufficiency induced steroid disturbances, which provoked hypertension only in combination with high salt intake, which was accompanied by disturbances in sEH and fatty acid metabolism. Our results suggest that sEH inhibition could be a potential target to treat hypertension in patients with GR haploinsufficiency.


Subject(s)
Adrenal Glands/pathology , Epoxide Hydrolases/metabolism , Hypertension/metabolism , Receptors, Glucocorticoid/genetics , Sodium Chloride, Dietary/adverse effects , Adrenal Glands/enzymology , Aldosterone/blood , Animals , Corticosterone/blood , Fatty Acids, Unsaturated , Haploinsufficiency , Hyperplasia , Hypertension/chemically induced , Hypertension/genetics , Male , Rats , Rats, Sprague-Dawley , Signal Transduction
9.
Kidney Int ; 95(2): 375-387, 2019 02.
Article in English | MEDLINE | ID: mdl-30502050

ABSTRACT

Erythropoietin (Epo) is essential for erythropoiesis and is mainly produced by the fetal liver and the adult kidney following hypoxic stimulation. Epo regulation is commonly studied in hepatoma cell lines, but differences in Epo regulation between kidney and liver limit the understanding of Epo dysregulation in polycythaemia and anaemia. To overcome this limitation, we have generated a novel transgenic mouse model expressing Cre recombinase specifically in the active fraction of renal Epo-producing (REP) cells. Crossing with reporter mice confirmed the inducible and highly specific tagging of REP cells, located in the corticomedullary border region where there is a steep drop in oxygen bioavailability. A novel method was developed to selectively grow primary REP cells in culture and to generate immortalized clonal cell lines, called fibroblastoid atypical interstitial kidney (FAIK) cells. FAIK cells show very early hypoxia-inducible factor (HIF)-2α induction, which precedes Epo transcription. Epo induction in FAIK cells reverses rapidly despite ongoing hypoxia, suggesting a cell autonomous feedback mechanism. In contrast, HIF stabilizing drugs resulted in chronic Epo induction in FAIK cells. RNA sequencing of three FAIK cell lines derived from independent kidneys revealed a high degree of overlap and suggests that REP cells represent a unique cell type with properties of pericytes, fibroblasts, and neurons, known as telocytes. These novel cell lines may be helpful to investigate myofibroblast differentiation in chronic kidney disease and to elucidate the molecular mechanisms of HIF stabilizing drugs currently in phase III studies to treat anemia in end-stage kidney disease.


Subject(s)
Erythropoietin/metabolism , Telocytes/pathology , Transcription Factors/metabolism , Anemia/etiology , Anemia/pathology , Animals , Cell Hypoxia , Cell Line , Erythropoietin/genetics , Feedback, Physiological , Kidney/cytology , Kidney/pathology , Mice , Mice, Transgenic , Primary Cell Culture , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/pathology , Telocytes/metabolism
10.
J Am Soc Nephrol ; 29(3): 977-990, 2018 03.
Article in English | MEDLINE | ID: mdl-29371419

ABSTRACT

The amiloride-sensitive epithelial sodium channel (ENaC) and the thiazide-sensitive sodium chloride cotransporter (NCC) are key regulators of sodium and potassium and colocalize in the late distal convoluted tubule of the kidney. Loss of the αENaC subunit leads to a perinatal lethal phenotype characterized by sodium loss and hyperkalemia resembling the human syndrome pseudohypoaldosteronism type 1 (PHA-I). In adulthood, inducible nephron-specific deletion of αENaC in mice mimics the lethal phenotype observed in neonates, and as in humans, this phenotype is prevented by a high sodium (HNa+)/low potassium (LK+) rescue diet. Rescue reflects activation of NCC, which is suppressed at baseline by elevated plasma potassium concentration. In this study, we investigated the role of the γENaC subunit in the PHA-I phenotype. Nephron-specific γENaC knockout mice also presented with salt-wasting syndrome and severe hyperkalemia. Unlike mice lacking αENaC or ßΕΝaC, an HNa+/LK+ diet did not normalize plasma potassium (K+) concentration or increase NCC activation. However, when K+ was eliminated from the diet at the time that γENaC was deleted, plasma K+ concentration and NCC activity remained normal, and progressive weight loss was prevented. Loss of the late distal convoluted tubule, as well as overall reduced ßENaC subunit expression, may be responsible for the more severe hyperkalemia. We conclude that plasma K+ concentration becomes the determining and limiting factor in regulating NCC activity, regardless of Na+ balance in γENaC-deficient mice.


Subject(s)
Epithelial Sodium Channels/genetics , Hyperkalemia/genetics , Potassium/blood , Pseudohypoaldosteronism/blood , Pseudohypoaldosteronism/genetics , Animals , Chelating Agents/therapeutic use , Dietary Supplements , Hyperkalemia/blood , Hyperkalemia/drug therapy , Mice , Mice, Knockout , Nephrons , Polystyrenes/therapeutic use , Potassium, Dietary/administration & dosage , Sodium, Dietary/administration & dosage , Solute Carrier Family 12, Member 3/metabolism
11.
J Neurosci ; 37(3): 660-672, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28100747

ABSTRACT

Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT: Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain.


Subject(s)
Chorda Tympani Nerve/growth & development , Glossopharyngeal Nerve/growth & development , Sodium Chloride/administration & dosage , Solitary Nucleus/growth & development , Taste Perception/physiology , Taste/physiology , Animals , Chorda Tympani Nerve/cytology , Chorda Tympani Nerve/drug effects , Female , Glossopharyngeal Nerve/cytology , Glossopharyngeal Nerve/drug effects , Male , Mice , Mice, Knockout , Solitary Nucleus/cytology , Solitary Nucleus/drug effects , Taste Buds/drug effects , Taste Buds/physiology , Taste Perception/drug effects
12.
Pflugers Arch ; 469(10): 1387-1399, 2017 10.
Article in English | MEDLINE | ID: mdl-28567665

ABSTRACT

In adulthood, an induced nephron-specific deficiency of αENaC (Scnn1a) resulted in pseudohypoaldosteronism type 1 (PHA-1) with sodium loss, hyperkalemia, and metabolic acidosis that is rescued through high-sodium/low-potassium (HNa+/LK+) diet. In the present study, we addressed whether renal ßENaC expression is required for sodium and potassium balance or can be compensated by remaining (α and γ) ENaC subunits using adult nephron-specific knockout (Scnn1bPax8/LC1) mice. Upon induction, these mice present a severe PHA-1 phenotype with weight loss, hyperkalemia, and dehydration, but unlike the Scnn1aPax8/LC1 mice without persistent salt wasting. This is followed by a marked downregulation of STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and Na+/Cl- co-transporter (NCC) protein expression and activity. Most of the experimental Scnn1bPax8/LC1 mice survived with a HNa+/LK+ diet that partly normalized NCC phosphorylation, but not total NCC expression. Since salt loss was minor, we applied a standard-sodium/LK+ diet that efficiently rescued these mice resulting in normokalemia and normalization of NCC phosphorylation, but not total NCC expression. A further switch to LNa+/standard-K+ diet induced again a severe PHA-1-like phenotype, but with only transient salt wasting indicating that low-K+ intake is critical to decrease hyperkalemia in a NCC-dependent manner. In conclusion, while the ßENaC subunit plays only a minor role in sodium balance, severe hyperkalemia results in downregulation of NCC expression and activity. Our data demonstrate the importance to primarily correct the hyperkalemia with a low-potassium diet that normalizes NCC activity.


Subject(s)
Diet, Sodium-Restricted , Epithelial Sodium Channels/metabolism , Hyperkalemia/metabolism , Potassium/metabolism , Animals , Kidney/metabolism , Mice, Transgenic , Nephrons/metabolism , Phenotype , Potassium Channels, Inwardly Rectifying/metabolism , Sodium/metabolism
13.
J Virol ; 90(9): 4298-4307, 2016 May.
Article in English | MEDLINE | ID: mdl-26889029

ABSTRACT

UNLABELLED: Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro Recently, we reported that inactivation of a single HA-activating protease gene,Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast,Tmprss2(-/-)Tmprss4(-/-)double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo IMPORTANCE: Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes,Tmprss2 and Tmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza viruses in vivo.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H3N2 Subtype/physiology , Membrane Proteins/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Serine Endopeptidases/metabolism , Animals , Bronchi/metabolism , Bronchi/virology , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Enzyme Activation , Female , Gene Deletion , Gene Expression , Host-Pathogen Interactions , Membrane Proteins/genetics , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Proteolysis , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , Serine Endopeptidases/genetics , Viral Load , Virus Replication
14.
Contact Dermatitis ; 77(1): 1-16, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28497472

ABSTRACT

Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet to be described.


Subject(s)
Biomarkers/analysis , Dermatitis, Allergic Contact/diagnosis , Alarmins/analysis , Antimicrobial Cationic Peptides/analysis , Bioengineering , Cytokines/analysis , Epidermis/chemistry , Genetic Markers , Humans , Immunoproteins/analysis , Peptide Hydrolases/analysis , Proteomics
15.
J Am Soc Nephrol ; 27(8): 2309-18, 2016 08.
Article in English | MEDLINE | ID: mdl-26701978

ABSTRACT

Systemic pseudohypoaldosteronism type 1 (PHA-1) is a severe salt-losing syndrome caused by loss-of-function mutations of the amiloride-sensitive epithelial sodium channel (ENaC) and characterized by neonatal life-threatening hypovolemia and hyperkalemia. The very high plasma aldosterone levels detected under hypovolemic or hyperkalemic challenge can lead to increased or decreased sodium reabsorption, respectively, through the Na(+)/Cl(-) cotransporter (NCC). However, the role of ENaC deficiency remains incompletely defined, because constitutive inactivation of individual ENaC subunits is neonatally lethal in mice. We generated adult inducible nephron-specific αENaC-knockout mice (Scnn1a(Pax8/LC1)) that exhibit hyperkalemia and body weight loss when kept on a regular-salt diet, thus mimicking PHA-1. Compared with control mice fed a regular-salt diet, knockout mice fed a regular-salt diet exhibited downregulated expression and phosphorylation of NCC protein, despite high plasma aldosterone levels. In knockout mice fed a high-sodium and reduced-potassium diet (rescue diet), although plasma aldosterone levels remained significantly increased, NCC expression returned to control levels, and body weight, plasma and urinary electrolyte concentrations, and excretion normalized. Finally, shift to a regular diet after the rescue diet reinstated the symptoms of severe PHA-1 syndrome and significantly reduced NCC phosphorylation. In conclusion, lack of ENaC-mediated sodium transport along the nephron cannot be compensated for by other sodium channels and/or transporters, only by a high-sodium and reduced-potassium diet. We further conclude that hyperkalemia becomes the determining factor in regulating NCC activity, regardless of sodium loss, in the ENaC-mediated salt-losing PHA-1 phenotype.


Subject(s)
Epithelial Sodium Channels/genetics , Hyperkalemia/genetics , Pseudohypoaldosteronism/genetics , Animals , Mice , Mice, Knockout , Nephrons , Severity of Illness Index
16.
Pflugers Arch ; 468(5): 895-908, 2016 05.
Article in English | MEDLINE | ID: mdl-26762397

ABSTRACT

Aldosterone is the main mineralocorticoid hormone controlling sodium balance, fluid homeostasis, and blood pressure by regulating sodium reabsorption in the aldosterone-sensitive distal nephron (ASDN). Germline loss-of-function mutations of the mineralocorticoid receptor (MR) in humans and in mice lead to the "renal" form of type 1 pseudohypoaldosteronism (PHA-1), a case of aldosterone resistance characterized by salt wasting, dehydration, failure to thrive, hyperkalemia, and metabolic acidosis. To investigate the importance of MR in adult epithelial cells, we generated nephron-specific MR knockout mice (MR(Pax8/LC1)) using a doxycycline-inducible system. Under standard diet, MR(Pax8/LC1) mice exhibit inability to gain weight and significant weight loss compared to control mice. Interestingly, despite failure to thrive, MR(Pax8/LC1) mice survive but develop a severe PHA-1 phenotype with higher urinary Na(+) levels, decreased plasma Na(+), hyperkalemia, and higher levels of plasma aldosterone. This phenotype further worsens and becomes lethal under a sodium-deficient diet. Na(+)/Cl(-) co-transporter (NCC) protein expression and its phosphorylated form are downregulated in the MR(Pax8/LC1) knockouts, as well as the αENaC protein expression level, whereas the expression of glucocorticoid receptor (GR) is increased. A diet rich in Na(+) and low in K(+) does not restore plasma aldosterone to control levels but is sufficient to restore body weight, plasma, and urinary electrolytes. In conclusion, MR deletion along the nephron fully recapitulates the features of severe human PHA-1. ENaC protein expression is dependent on MR activity. Suppression of NCC under hyperkalemia predominates in a hypovolemic state.


Subject(s)
Nephrons/metabolism , Phenotype , Pseudohypoaldosteronism/metabolism , Receptors, Mineralocorticoid/deficiency , Aldosterone/blood , Animals , Epithelial Cells/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Gene Deletion , Mice , Potassium/blood , Potassium/urine , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/pathology , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Sodium/blood , Sodium/urine , Sodium Chloride Symporters/genetics , Sodium Chloride Symporters/metabolism , Weight Loss
17.
Am J Physiol Renal Physiol ; 310(4): F300-10, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26582762

ABSTRACT

Genetic inactivation of the epithelial Na(+) channel α-subunit (αENaC) in the renal collecting duct (CD) does not interfere with Na(+) and K(+) homeostasis in mice. However, inactivation in the CD and a part of the connecting tubule (CNT) induces autosomal recessive pseudohypoaldosteronism type 1 (PHA-1) symptoms in subjects already on a standard diet. In the present study, we further examined the importance of αENaC in the CNT. Knockout mice with αENaC deleted primarily in a part of the CNT (CNT-KO) were generated using Scnn1a(lox/lox) mice and Atp6v1b1::Cre mice. With a standard diet, plasma Na(+) concentration ([Na(+)]) and [K(+)], and urine Na(+) and K(+) output were unaffected. Seven days of Na(+) restriction (0.01% Na(+)) led to a higher urine Na(+) output only on days 3-5, and after 7 days plasma [Na(+)] and [K(+)] were unaffected. In contrast, the CNT-KO mice were highly susceptible to a 2-day 5% K(+) diet and showed lower food intake and relative body weight, lower plasma [Na(+)], higher fractional excretion (FE) of Na(+), higher plasma [K(+)], and lower FE of K(+). The higher FE of Na(+) coincided with lower abundance and phosphorylation of the Na(+)-Cl(-) cotransporter. In conclusion, reducing ENaC expression in the CNT induces clear PHA-1 symptoms during high dietary K(+) loading.


Subject(s)
Epithelial Sodium Channels/biosynthesis , Kidney Tubules, Collecting/metabolism , Potassium/metabolism , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/metabolism , Aldosterone/metabolism , Animals , Body Weight , Colon/metabolism , Diet , Eating , Epithelial Sodium Channels/genetics , Female , Kidney Tubules, Collecting/pathology , Male , Mice , Mice, Knockout , Phosphorylation , Potassium/blood , Pseudohypoaldosteronism/pathology , Sodium/blood , Sodium/metabolism , Solute Carrier Family 12, Member 1/biosynthesis , Solute Carrier Family 12, Member 1/genetics , Solute Carrier Family 12, Member 3/biosynthesis , Solute Carrier Family 12, Member 3/genetics
18.
Nature ; 464(7286): 297-301, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20107438

ABSTRACT

Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.


Subject(s)
Sodium/physiology , Taste Buds/physiology , Taste/genetics , Animals , Behavior/physiology , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Mice , Mice, Transgenic , Taste Buds/cytology , Taste Buds/metabolism
19.
Pflugers Arch ; 467(12): 2529-39, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26055235

ABSTRACT

Cirrhosis is a frequent and severe disease, complicated by renal sodium retention leading to ascites and oedema. A better understanding of the complex mechanisms responsible for renal sodium handling could improve clinical management of sodium retention. Our aim was to determine the importance of the amiloride-sensitive epithelial sodium channel (ENaC) in collecting ducts in compensate and decompensate cirrhosis. Bile duct ligation was performed in control mice (CTL) and collecting duct-specific αENaC knockout (KO) mice, and ascites development, aldosterone plasma concentration, urinary sodium/potassium ratio and sodium transporter expression were compared. Disruption of ENaC in collecting ducts (CDs) did not alter ascites development, urinary sodium/potassium ratio, plasma aldosterone concentrations or Na,K-ATPase abundance in CCDs. Total αENaC abundance in whole kidney increased in cirrhotic mice of both genotypes and cleaved forms of α and γ ENaC increased only in ascitic mice of both genotypes. The sodium chloride cotransporter (NCC) abundance was lower in non-ascitic KO, compared to non-ascitic CTL, and increased when ascites appeared. In ascitic mice, the lack of αENaC in CDs induced an upregulation of total ENaC and NCC and correlated with the cleavage of ENaC subunits. This revealed compensatory mechanisms which could also take place when treating the patients with diuretics. These compensatory mechanisms should be considered for future development of therapeutic strategies.


Subject(s)
Bile Ducts/metabolism , Epithelial Sodium Channels/metabolism , Liver Cirrhosis, Experimental/metabolism , Sodium Chloride Symporters/metabolism , Aldosterone/blood , Animals , Epithelial Sodium Channels/genetics , Mice , Potassium/urine , Sodium/urine
20.
J Cell Sci ; 126(Pt 9): 1942-51, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23447677

ABSTRACT

Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.


Subject(s)
Cell Movement , Epithelial Sodium Channels/metabolism , Keratinocytes/metabolism , Sodium/metabolism , Animals , Epithelial Sodium Channels/genetics , Gene Knockdown Techniques , Humans , Ion Transport/genetics , Keratinocytes/pathology , Male , Mice , Mice, Knockout , Skin/injuries , Skin/metabolism , Skin/pathology , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL