ABSTRACT
Early T-precursor acute lymphoblastic leukemia (ETP-ALL) is a unique subtype of immature T-ALL that was initially associated with a dramatically inferior prognosis as compared to non-ETP T-ALL (Not-ETP) when it was first described in 2009. Analyses of larger patient cohorts treated with more contemporary regimens, however, have shown minimal survival differences between ETP and Not-ETP. In this manuscript we utilize representative cases to explore therapeutic advances and address common clinical questions regarding management of children, adolescents, and young adults with ETP-ALL. We describe our recommended treatment approach for a child or adolescent with newly diagnosed ETP-ALL, with an emphasis on the prognostic significance of induction failure and detectable minimal residual disease and the role for hematopoietic stem cell transplant in first remission. We discuss the interplay between the ETP immunophenotype and genomic markers of immaturity in T-ALL. Finally, we review novel therapeutic approaches that should be considered when managing relapsed or refractory ETP-ALL.
ABSTRACT
ABSTRACT: Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen breakage syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germ line NBN variants may also be at risk for leukemia development, although this is much less characterized. By sequencing 4325 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL), we systematically examined the frequency of germ line NBN variants and identified 25 unique, putatively damaging NBN coding variants in 50 patients. Compared with the frequency of NBN variants in gnomAD noncancer controls (189 unique, putatively damaging NBN coding variants in 472 of 118 479 individuals), we found significant overrepresentation in pediatric B-ALL (P = .004; odds ratio, 1.8). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using 2 functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as nonfunctional or partially functional. Finally, we found that germ line NBN variant carriers, all of whom were identified as heterozygous genotypes, showed similar survival outcomes relative to those with wild type status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, and the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy. These trials were registered at www.clinicaltrials.gov as #NCT01225874, NCT00075725, NCT00103285, NCI-T93-0101D, and NCT00137111.
Subject(s)
Cell Cycle Proteins , Genetic Predisposition to Disease , Germ-Line Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Cell Cycle Proteins/genetics , Nuclear Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/geneticsABSTRACT
ABSTRACT: Defining prognostic variables in T-lymphoblastic lymphoma (T-LL) remains a challenge. AALL1231 was a Children's Oncology Group phase 3 clinical trial for newly diagnosed patients with T acute lymphoblastic leukemia or T-LL, randomizing children and young adults to a modified augmented Berlin-Frankfurt-Münster backbone to receive standard therapy (arm A) or with addition of bortezomib (arm B). Optional bone marrow samples to assess minimal residual disease (MRD) at the end of induction (EOI) were collected in T-LL analyzed to assess the correlation of MRD at the EOI to event-free survival (EFS). Eighty-six (41%) of the 209 patients with T-LL accrued to this trial submitted samples for MRD assessment. Patients with MRD <0.1% (n = 75) at EOI had a superior 4-year EFS vs those with MRD ≥0.1% (n = 11) (89.0% ± 4.4% vs 63.6% ± 17.2%; P = .025). Overall survival did not significantly differ between the 2 groups. Cox regression for EFS using arm A as a reference demonstrated that MRD EOI ≥0.1% was associated with a greater risk of inferior outcome (hazard ratio, 3.73; 95% confidence interval, 1.12-12.40; P = .032), which was independent of treatment arm assignment. Consideration to incorporate MRD at EOI into future trials will help establish its value in defining risk groups. CT# NCT02112916.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasm, Residual , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Female , Male , Adolescent , Child, Preschool , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/administration & dosage , Bortezomib/therapeutic use , Young Adult , Disease-Free Survival , Adult , Infant , PrognosisABSTRACT
To determine the prognostic significance of central nervous system (CNS) leukemic involvement in newly diagnosed T-cell acute lymphoblastic leukemia (T-ALL), outcomes on consecutive, phase 3 Children's Oncology Group clinical trials were examined. AALL0434 and AALL1231 tested efficacy of novel agents within augmented-Berlin-Frankfurt-Münster (aBFM) therapy. In addition to testing study-specific chemotherapy through randomization, the AALL0434 regimen delivered cranial radiation therapy (CRT) to most participants (90.8%), whereas AALL1231 intensified chemotherapy to eliminate CRT in 88.2% of participants. In an analysis of 2164 patients with T-ALL (AALL0434, 1550; AALL1231, 614), 1564 had CNS-1 (72.3%), 441 CNS-2 (20.4%), and 159 CNS-3 (7.3%). The 4-year event-free-survival (EFS) was similar for CNS-1 (85.1% ± 1.0%) and CNS-2 (83.2% ± 2.0%), but lower for CNS-3 (71.8% ± 4.0%; P = .0004). Patients with CNS-1 and CNS-2 had similar 4-year overall survival (OS) (90.1% ± 0.8% and 90.5% ± 1.5%, respectively), with OS for CNS-3 being 82.7% ± 3.4% (P = .005). Despite therapeutic differences, outcomes for CNS-1 and CNS-2 were similar regardless of CRT, intensified corticosteroids, or novel agents. Except for significantly superior outcomes with nelarabine on AALL0434 (4-year disease-free survival, 93.1% ± 5.2%), EFS/OS was inferior with CNS-3 status, all of whom received CRT. Combined analyses of >2000 patients with T-ALL identified that CNS-1 and CNS-2 status at diagnosis had similar outcomes. Unlike B-ALL, CNS-2 status in T-ALL does not impact outcome with aBFM therapy, without additional intrathecal therapy, with or without CRT. Although nelarabine improved outcomes for those with CNS-3 status, novel approaches are needed. These trials were registered at www.clinicaltrials.gov as #NCT00408005 (AALL0434) and #NCT02112916 (AALL1231).
Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Infant , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Central Nervous System , Disease-Free Survival , Methotrexate , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prognosis , T-Lymphocytes , Treatment OutcomeABSTRACT
The early thymic precursor (ETP) immunophenotype was previously reported to confer poor outcome in T-cell acute lymphoblastic leukemia (T-ALL). Between 2009 and 2014, 1256 newly diagnosed children and young adults enrolled in Children's Oncology Group (COG) AALL0434 were assessed for ETP status and minimal residual disease (MRD) using flow cytometry at a central reference laboratory. The subject phenotypes were categorized as ETP (n = 145; 11.5%), near-ETP (n = 209; 16.7%), or non-ETP (n = 902; 71.8%). Despite higher rates of induction failure for ETP (6.2%) and near-ETP (6.2%) than non-ETP (1.2%; P < .0001), all 3 groups showed excellent 5-year event-free survival (EFS) and overall survival (OS): ETP (80.4% ± 3.9% and 86.8 ± 3.4%, respectively), near-ETP (81.1% ± 3.3% and 89.6% ± 2.6%, respectively), and non-ETP (85.3% ± 1.4% and 90.0% ± 1.2%, respectively; P = .1679 and P = .3297, respectively). There was no difference in EFS or OS for subjects with a day-29 MRD <0.01% vs 0.01% to 0.1%. However, day-29 MRD ≥0.1% was associated with inferior EFS and OS for patients with near-ETP and non-ETP, but not for those with ETP. For subjects with day-29 MRD ≥1%, end-consolidation MRD ≥0.01% was a striking predictor of inferior EFS (80.9% ± 4.1% vs 52.4% ± 8.1%, respectively; P = .0001). When considered as a single variable, subjects with all 3 T-ALL phenotypes had similar outcomes and subjects with persistent postinduction disease had inferior outcomes, regardless of their ETP phenotype. This clinical trial was registered at AALL0434 as #NCT00408005.
Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Young Adult , Disease-Free Survival , Neoplasm, Residual/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , PrognosisABSTRACT
Trisomy 21, the genetic cause of Down syndrome (DS), is the most common congenital chromosomal anomaly. It is associated with a 20-fold increased risk of acute lymphoblastic leukemia (ALL) during childhood and results in distinctive leukemia biology. To comprehensively define the genomic landscape of DS-ALL, we performed whole-genome sequencing and whole-transcriptome sequencing (RNA-Seq) on 295 cases. Our integrated genomic analyses identified 15 molecular subtypes of DS-ALL, with marked enrichment of CRLF2-r, IGH::IGF2BP1, and C/EBP altered (C/EBPalt) subtypes compared with 2257 non-DS-ALL cases. We observed abnormal activation of the CEBPD, CEBPA, and CEBPE genes in 10.5% of DS-ALL cases via a variety of genomic mechanisms, including chromosomal rearrangements and noncoding mutations leading to enhancer hijacking. A total of 42.3% of C/EBP-activated DS-ALL also have concomitant FLT3 point mutations or insertions/deletions, compared with 4.1% in other subtypes. CEBPD overexpression enhanced the differentiation of mouse hematopoietic progenitor cells into pro-B cells in vitro, particularly in a DS genetic background. Notably, recombination-activating gene-mediated somatic genomic abnormalities were common in DS-ALL, accounting for a median of 27.5% of structural alterations, compared with 7.7% in non-DS-ALL. Unsupervised hierarchical clustering analyses of CRLF2-rearranged DS-ALL identified substantial heterogeneity within this group, with the BCR::ABL1-like subset linked to an inferior event-free survival, even after adjusting for known clinical risk factors. These results provide important insights into the biology of DS-ALL and point to opportunities for targeted therapy and treatment individualization.
Subject(s)
Down Syndrome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Down Syndrome/complications , Down Syndrome/genetics , Mutation , Risk Factors , Genomics , Chromosome Aberrations , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/geneticsABSTRACT
Chimeric antigen receptor (CAR) T-cell therapy can induce durable remissions of relapsed/refractory B-acute lymphoblastic leukemia (ALL). However, case reports suggested differential outcomes mediated by leukemia cytogenetics. We identified children and young adults with relapsed/refractory CD19+ ALL/lymphoblastic lymphoma treated on 5 CD19-directed CAR T-cell (CTL019 or humanized CART19) clinical trials or with commercial tisagenlecleucel from April 2012 to April 2019. Patients were hierarchically categorized according to leukemia cytogenetics: High-risk lesions were defined as KMT2A (MLL) rearrangements, Philadelphia chromosome (Ph+), Ph-like, hypodiploidy, or TCF3/HLF; favorable as hyperdiploidy or ETV6/RUNX1; and intermediate as iAMP21, IKZF1 deletion, or TCF3/PBX1. Of 231 patients aged 1 to 29, 74 (32%) were categorized as high risk, 28 (12%) as intermediate, 43 (19%) as favorable, and 86 (37%) as uninformative. Overall complete remission rate was 94%, with no difference between strata. There was no difference in relapse-free survival (RFS; P = .8112), with 2-year RFS for the high-risk group of 63% (95% confidence interval [CI], 52-77). There was similarly no difference seen in overall survival (OS) (P = .5488), with 2-year OS for the high-risk group of 70% (95% CI, 60-82). For patients with KMT2A-rearranged infant ALL (n = 13), 2-year RFS was 67% (95% CI, 45-99), and OS was 62% (95% CI, 40-95), with multivariable analysis demonstrating no increased risk of relapse (hazard ratio, 0.70; 95% CI, 0.21-2.90; P = .7040) but a higher proportion of relapses associated with myeloid lineage switch and a 3.6-fold increased risk of all-cause death (95% CI, 1.04-12.75; P = .0434). CTL019/huCART19/tisagenlecleucel are effective at achieving durable remissions across cytogenetic categories. Relapsed/refractory patients with high-risk cytogenetics, including KMT2A-rearranged infant ALL, demonstrated high RFS and OS probabilities at 2 years.
Subject(s)
Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antigens, CD19 , Child , Cytogenetic Analysis , Humans , Infant , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/therapeutic use , Recurrence , Young AdultABSTRACT
Comparison of treatment strategies in de novo pediatric acute lymphoblastic leukemia (ALL) requires standardized measures of efficacy. Key parameters that define disease-related events, including complete remission (CR), treatment failure (TF; not achieving CR), and relapse (loss of CR) require an updated consensus incorporating modern diagnostics. We collected the definitions of CR, TF, and relapse from recent and current pediatric clinical trials for the treatment of ALL, including the key components of response evaluation (timing, anatomic sites, detection methods, and thresholds) and found significant heterogeneity, most notably in the definition of TF. Representatives of the major international ALL clinical trial groups convened to establish consensus definitions. CR should be defined at a time point no earlier than at the end of induction and should include the reduction of blasts below a specific threshold in bone marrow and extramedullary sites, incorporating minimal residual disease (MRD) techniques for marrow evaluations. TF should be defined as failure to achieve CR by a prespecified time point in therapy. Relapse can only be defined in patients who have achieved CR and must include a specific threshold of leukemic cells in the bone marrow confirmed by MRD, the detection of central nervous system leukemia, or documentation of extramedullary disease. Definitions of TF and relapse should harmonize with eligibility criteria for clinical trials in relapsed/refractory ALL. These consensus definitions will enhance the ability to compare outcomes across pediatric ALL trials and facilitate development of future international collaborative trials.
Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Consensus , Humans , Neoplasm, Residual/diagnosis , Pons , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Recurrence , Remission Induction , Treatment FailureABSTRACT
KMT2A-rearranged (KMT2A-r) infant acute lymphoblastic leukemia (ALL) is a devastating malignancy with a dismal outcome, and younger age at diagnosis is associated with increased risk of relapse. To discover age-specific differences and critical drivers that mediate poor outcome in KMT2A-r ALL, we subjected KMT2A-r leukemias and normal hematopoietic cells from patients of different ages to single-cell multiomics analyses. We uncovered the following critical new insights: leukemia cells from patients <6 months have significantly increased lineage plasticity. Steroid response pathways are downregulated in the most immature blasts from younger patients. We identify a hematopoietic stem and progenitor-like (HSPC-like) population in the blood of younger patients that contains leukemic blasts and form an immunosuppressive signaling circuit with cytotoxic lymphocytes. These observations offer a compelling explanation for the ability of leukemias in young patients to evade chemotherapy and immune-mediated control. Our analysis also revealed preexisting lymphomyeloid primed progenitors and myeloid blasts at initial diagnosis of B-ALL. Tracking of leukemic clones in 2 patients whose leukemia underwent a lineage switch documented the evolution of such clones into frank acute myeloid leukemia (AML). These findings provide critical insights into KMT2A-r ALL and have clinical implications for molecularly targeted and immunotherapy approaches. Beyond infant ALL, our study demonstrates the power of single-cell multiomics to detect tumor intrinsic and extrinsic factors affecting rare but critical subpopulations within a malignant population that ultimately determines patient outcome.
Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antineoplastic Agents/therapeutic use , Gene Rearrangement , Humans , Immunotherapy , Infant , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/geneticsABSTRACT
Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.
Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Adult , Aged , CDX2 Transcription Factor/genetics , Child , Chromatin , Female , Genomics/methods , Humans , Male , Middle Aged , Pol1 Transcription Initiation Complex Proteins , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Transcription Factors/genetics , Transcriptome , Young AdultABSTRACT
Infants less than 1 year old diagnosed with KMT2A-rearranged (KMT2A-r) acute lymphoblastic leukemia (ALL) are at high risk of remission failure, relapse, and death due to leukemia, despite intensive therapies. Infant KMT2A-r ALL blasts are characterized by DNA hypermethylation. Epigenetic priming with DNA methyltransferase inhibitors increases the cytotoxicity of chemotherapy in preclinical studies. The Children's Oncology Group trial AALL15P1 tested the safety and tolerability of five days of azacitidine immediately prior to the start of chemotherapy on day six, in four post-induction chemotherapy courses for infants with newly diagnosed KMT2A-r ALL. The treatment was welltolerated, with only two of 31 evaluable patients (6.5%) experiencing dose-limiting toxicity. Whole genome bisulfite sequencing of peripheral blood mononuclear cells (PBMCs) demonstrated decreased DNA methylation in 87% of samples tested following five days of azacitidine. Event-free survival was similar to prior studies of newly diagnosed infant ALL. Azacitidine is safe and results in decreased DNA methylation of PBMCs in infants with KMT2A-r ALL, but the incorporation of azacitidine to enhance cytotoxicity did not impact survival. Clinicaltrials.gov identifier: NCT02828358.
ABSTRACT
Analysis of molecular aberrations across multiple cancer types, known as pan-cancer analysis, identifies commonalities and differences in key biological processes that are dysregulated in cancer cells from diverse lineages. Pan-cancer analyses have been performed for adult but not paediatric cancers, which commonly occur in developing mesodermic rather than adult epithelial tissues. Here we present a pan-cancer study of somatic alterations, including single nucleotide variants, small insertions or deletions, structural variations, copy number alterations, gene fusions and internal tandem duplications in 1,699 paediatric leukaemias and solid tumours across six histotypes, with whole-genome, whole-exome and transcriptome sequencing data processed under a uniform analytical framework. We report 142 driver genes in paediatric cancers, of which only 45% match those found in adult pan-cancer studies; copy number alterations and structural variants constituted the majority (62%) of events. Eleven genome-wide mutational signatures were identified, including one attributed to ultraviolet-light exposure in eight aneuploid leukaemias. Transcription of the mutant allele was detectable for 34% of protein-coding mutations, and 20% exhibited allele-specific expression. These data provide a comprehensive genomic architecture for paediatric cancers and emphasize the need for paediatric cancer-specific development of precision therapies.
Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Leukemia/genetics , Mutation/genetics , Neoplasms/genetics , Alleles , Aneuploidy , Child , DNA Copy Number Variations , Exome/genetics , Humans , Mutation/radiation effects , Mutation Rate , Oncogenes/genetics , Precision Medicine/trends , Ultraviolet Rays/adverse effectsABSTRACT
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and constitutes approximately 25 % of cancer diagnoses among children under the age of 15 (Howlader et al., 2013) [1]. Overall, about half of ALL cases occur in children and adolescents and it is the most common acute leukemia until the early 20s, after which acute myeloid leukemia predominates. ALL is the most successful treatment paradigm in pediatric cancer medicine as illustrated by the significant survival rate improvement from â¼10 % in the 1960s to >90 % today (Hunger et al., 2015) [2]. This remarkable success stems from the progressive improvement in the efficacy of risk-adapted multiagent chemotherapy regimens with effective central nervous system (CNS) prophylaxis via well-designed randomized clinical trials conducted by international collaborative consortia, enhanced supportive care measures to decrease treatment-related mortality, in-depth understanding of the genetic basis of ALL, and refinement in treatment response assessment through serial minimal residual disease (MRD) monitoring (Pui et al., 2015) [3]. These advances collectively contribute to a decline in mortality rate of 23.5% for children diagnosed with ALL in the US from 2000 to 2010 (Smith et al., 2014) [4]. Nevertheless, outcomes of older adolescents and young adults with ALL still lag behind those of their younger counterparts despite pediatric-inspired chemotherapy regimens (Stock et al., 2019) [5], relapsed/refractory childhood ALL is associated with poor outcomes (Rheingold et al., 2019) [6], and ALL still represents the leading causes of cancer-related deaths (Smith et al., 2010) [7]. The last two decades have witnessed important genomic discoveries in ALL, enabled by advances in next-generation sequencing (NGS) technologies to characterize the landscape of germline and somatic alterations in ALL, some of which have important diagnostic, prognostic and therapeutic implications. Comprehensive genomic analysis of large cohorts of children and adults with ALL has revised the taxonomy of ALL in the molecular era by identifying novel clonal, subtype-defined chromosomal alterations associated with distinct gene expression signatures, thus reducing the proportion of patients previously labelled as "Others" from 25 % to approximately 5 % (Mullighan et al., 2019) [8]. Insights into the genomics of ALL further provide compelling biologic rationale to expand the scope of precision medicine therapies for childhood ALL. Herein, we summarize a decade of genomic discoveries to highlight three different facets of precision medicine in pediatric ALL: 1) inherited predispositions of ALL; 2) relevant molecularly targeted therapies in genomically-defined ALL subtypes; and 3) treatment response monitoring via pharmacogenomics and novel MRD biomarkers.
Subject(s)
Precision Medicine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Genomics , High-Throughput Nucleotide Sequencing , Humans , Neoplasm, Residual/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/geneticsABSTRACT
A majority of children and young adults with acute lymphoblastic leukemia (ALL) are cured with contemporary multiagent chemotherapy regimens. The high rate of survival is largely the result of 70 years of randomized clinical trials performed by international cooperative groups. Contemporary ALL therapy usually consists of cycles of multiagent chemotherapy administered over 2 to 3 years that includes central nervous system (CNS) prophylaxis, primarily consisting of CNS-penetrating systemic agents and intrathecal therapy. Although the treatment backbones vary among cooperative groups, the same agents are used, and the outcomes are comparable. ALL therapy typically begins with 5 to 9 months of more-intensive chemotherapy followed by a prolonged low-intensity maintenance phase. Historically, a few cooperative groups treated boys with 1 more year of maintenance therapy than girls; however, most groups treated boys and girls with equal therapy lengths. This practice arose because of inferior survival in boys with older less-intensive regimens. The extra year of therapy added significant burden to patients and families and involved short- and long-term risks that were potentially life threatening and debilitating. The Children's Oncology Group recently changed its approach as part of its current generation of trials in B-cell ALL and now treats boys and girls with the same duration of therapy. We discuss the rationale behind this change, review the data and differences in practice across cooperative groups, and provide our perspective regarding the length of maintenance therapy.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Maintenance Chemotherapy/methods , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Female , Humans , Male , Sex CharacteristicsABSTRACT
There is growing evidence supporting an inherited basis for susceptibility to acute lymphoblastic leukemia (ALL) in children. In particular, we and others reported recurrent germline ETV6 variants linked to ALL risk, which collectively represent a novel leukemia predisposition syndrome. To understand the influence of ETV6 variation on ALL pathogenesis, we comprehensively characterized a cohort of 32 childhood leukemia cases arising from this rare syndrome. Of 34 nonsynonymous germline ETV6 variants in ALL, we identified 22 variants with impaired transcription repressor activity, loss of DNA binding, and altered nuclear localization. Missense variants retained dimerization with wild-type ETV6 with potentially dominant-negative effects. Whole-transcriptome and whole-genome sequencing of this cohort of leukemia cases revealed a profound influence of germline ETV6 variants on leukemia transcriptional landscape, with distinct ALL subsets invoking unique patterns of somatic cooperating mutations. 70% of ALL cases with damaging germline ETV6 variants exhibited hyperdiploid karyotype with characteristic recurrent mutations in NRAS, KRAS, and PTPN11. In contrast, the remaining 30% cases had a diploid leukemia genome and an exceedingly high frequency of somatic copy-number loss of PAX5 and ETV6, with a gene expression pattern that strikingly mirrored that of ALL with somatic ETV6-RUNX1 fusion. Two ETV6 germline variants gave rise to both acute myeloid leukemia and ALL, with lineage-specific genetic lesions in the leukemia genomes. ETV6 variants compromise its tumor suppressor activity in vitro with specific molecular targets identified by assay for transposase-accessible chromatin sequencing profiling. ETV6-mediated ALL predisposition exemplifies the intricate interactions between inherited and acquired genomic variations in leukemia pathogenesis.
Subject(s)
Genetic Predisposition to Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Child , Genes, Dominant , Genome, Human , Germ-Line Mutation/genetics , Humans , ETS Translocation Variant 6 ProteinABSTRACT
Not available.
ABSTRACT
Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.
Subject(s)
Burkitt Lymphoma , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Burkitt Lymphoma/diagnosis , Burkitt Lymphoma/genetics , Burkitt Lymphoma/therapy , Prospective Studies , Immunoglobulins/genetics , Gene Rearrangement , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapyABSTRACT
Chemotherapy-induced peripheral neuropathy (CIPN), a common condition in children with acute lymphoblastic leukemia, can be challenging to diagnose. Using data from Children's Oncology Group AALL0932 physical function study, we sought to determine if parent/guardian proxy-reported responses from the Pediatric Outcomes Data Collection Instrument could identify children with motor or sensory CIPN diagnosed by physical/occupational therapists (PT/OT). Four variables moderately discriminated between children with and without motor CIPN (c-index 0.76, 95% confidence interval [CI]: 0.64-0.84), but sensory and optimism-corrected models had weak discrimination (c-index sensory models 0.65, 95% CI: 0.54-0.74). New proxy-report measures are needed to identify children with PT/OT diagnosed CIPN.
Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Physical Examination , Quality of Life , Antineoplastic Agents/therapeutic useABSTRACT
We measured minimal residual disease (MRD) by multiparameter flow cytometry at three time points (TP) in 117 infants with KMT2A (lysine [K]-specific methyltransferase 2A)-rearranged and 58 with KMT2A-germline acute lymphoblastic leukemia (ALL) on Children's Oncology Group AALL0631 study. For KMT2A-rearranged patients, 3-year event-free survival (EFS) by MRD-positive (≥0.01%) versus MRD-negative (<0.01%) was: TP1: 25% (±6%) versus 49% (±7%; p = .0009); TP2: 21% (±8%) versus 47% (±7%; p < .0001); and TP3: 22% (±14%) versus 51% (±6%; p = .0178). For KMT2A-germline patients, 3-year EFS was: TP1: 88% (±12%) versus 87% (±5%; p = .73); TP2: 100% versus 88% (±5%; p = .24); and TP3: 100% versus 87% (±5%; p = .53). MRD was a strong independent outcome predictor in KMT2A-rearranged, but not KMT2A-germline infant ALL.
ABSTRACT
BACKGROUND: Boys with acute lymphoblastic leukemia (ALL) have historically experienced inferior survival compared to girls. This study determined whether sex-based disparities persist with contemporary therapy and whether patterns of treatment failure vary by sex. METHODS: Patients 1 to 30.99 years old were enrolled on frontline Children's Oncology Group trials between 2004 and 2014. Boys received an additional year of maintenance therapy. Sex-based differences in the distribution of various prognosticators, event-free survival (EFS) and overall survival (OS), and subcategories of relapse by site were explored. RESULTS: A total of 8202 (54.4% male) B-cell ALL (B-ALL) and 1562 (74.3% male) T-cell ALL (T-ALL) patients were included. There was no sex-based difference in central nervous system (CNS) status. Boys experienced inferior 5-year EFS and OS (EFS, 84.6% ± 0.5% vs 86.0% ± 0.6%, P = .009; OS, 91.3% ± 0.4% vs 92.5% ± 0.4%, P = .02). This was attributable to boys with B-ALL, who experienced inferior EFS (hazard ratio [HR], 1.2; 95% confidence interval [95% CI], 1.1-1.3; P = .004) and OS (HR, 1.2; 95% CI, 1.0-1.4; P = .046) after adjustment for prognosticators. Inferior B-ALL outcomes in boys were attributable to more relapses (5-year cumulative incidence 11.2% ± 0.5% vs 9.6% ± 0.5%; P = .001), particularly involving the CNS (4.2% ± 0.3% vs 2.5% ± 0.3%; P < .0001). There was no difference in isolated bone marrow relapses (5.4% ± 0.4% vs 6.2% ± 0.4%; P = .49). There were no sex-based differences in EFS or OS in T-ALL. CONCLUSIONS: Sex-based disparities in ALL persist, attributable to increased CNS relapses in boys with B-ALL. Studies of potential mechanisms are warranted. Improved strategies to identify and modify treatment for patients at highest risk of CNS relapse may have particular benefit for boys.