Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 185(21): 3931-3949.e26, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36240740

ABSTRACT

Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.


Subject(s)
Cell Movement , Glypicans/chemistry , Netrin Receptors/chemistry , Animals , Glypicans/metabolism , Humans , Mice , Mutant Proteins , Netrin Receptors/metabolism , Receptors, Cell Surface/metabolism , Single-Domain Antibodies , Thrombospondins
2.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35662412

ABSTRACT

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Subject(s)
Antibodies, Monoclonal , COVID-19 Vaccines/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Viral , COVID-19 , COVID-19 Vaccines/administration & dosage , Epitopes , Humans , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
3.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35772405

ABSTRACT

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests , SARS-CoV-2/genetics , South Africa
4.
Cell ; 185(3): 467-484.e15, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35081335

ABSTRACT

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

5.
Nat Immunol ; 23(9): 1365-1378, 2022 09.
Article in English | MEDLINE | ID: mdl-35999394

ABSTRACT

CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.


Subject(s)
Antigens, CD , CD28 Antigens , Antigens, CD/metabolism , Antigens, Differentiation/metabolism , B7-1 Antigen , B7-2 Antigen/genetics , CD28 Antigens/metabolism , CTLA-4 Antigen/genetics , Cell Adhesion Molecules , Ligands , Lymphocyte Activation
6.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354703

ABSTRACT

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/metabolism , CD28 Antigens , Receptors, Immunologic
7.
Nature ; 595(7865): 130-134, 2021 07.
Article in English | MEDLINE | ID: mdl-34040256

ABSTRACT

Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.


Subject(s)
Cryoelectron Microscopy , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/metabolism , Pemetrexed/chemistry , Pemetrexed/metabolism , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/metabolism , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Biological Transport , Humans , Models, Molecular , Proton-Coupled Folate Transporter/ultrastructure , Protons
8.
Proc Natl Acad Sci U S A ; 119(31): e2205412119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35858383

ABSTRACT

Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure-activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein-nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody Affinity , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibody Affinity/genetics , Cryoelectron Microscopy , Entropy , Genetic Engineering , Humans , Protein Binding , Protein Domains , SARS-CoV-2/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/immunology
9.
Brain ; 146(2): 727-738, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35867861

ABSTRACT

The SARS-CoV-2 receptor, ACE2, is found on pericytes, contractile cells enwrapping capillaries that regulate brain, heart and kidney blood flow. ACE2 converts vasoconstricting angiotensin II into vasodilating angiotensin-(1-7). In brain slices from hamster, which has an ACE2 sequence similar to human ACE2, angiotensin II evoked a small pericyte-mediated capillary constriction via AT1 receptors, but evoked a large constriction when the SARS-CoV-2 receptor binding domain (RBD, original Wuhan variant) was present. A mutated non-binding RBD did not potentiate constriction. A similar RBD-potentiated capillary constriction occurred in human cortical slices, and was evoked in hamster brain slices by pseudotyped virions expressing SARS-CoV-2 spike protein. This constriction reflects an RBD-induced decrease in the conversion of angiotensin II to angiotensin-(1-7) mediated by removal of ACE2 from the cell surface membrane and was mimicked by blocking ACE2. The clinically used drug losartan inhibited the RBD-potentiated constriction. Thus, AT1 receptor blockers could be protective in COVID-19 by preventing pericyte-mediated blood flow reductions in the brain, and perhaps the heart and kidney.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , COVID-19/metabolism , Pericytes/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Capillaries , Constriction , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding
10.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34321357

ABSTRACT

Many bacteria, including the major human pathogen Pseudomonas aeruginosa, are naturally found in multicellular, antibiotic-tolerant biofilm communities, in which cells are embedded in an extracellular matrix of polymeric molecules. Cell-cell interactions within P. aeruginosa biofilms are mediated by CdrA, a large, membrane-associated adhesin present in the extracellular matrix of biofilms, regulated by the cytoplasmic concentration of cyclic diguanylate. Here, using electron cryotomography of focused ion beam-milled specimens, we report the architecture of CdrA molecules in the extracellular matrix of P. aeruginosa biofilms at intact cell-cell junctions. Combining our in situ observations at cell-cell junctions with biochemistry, native mass spectrometry, and cellular imaging, we demonstrate that CdrA forms an extended structure that projects from the outer membrane to tether cells together via polysaccharide binding partners. We go on to show the functional importance of CdrA using custom single-domain antibody (nanobody) binders. Nanobodies targeting the tip of functional cell-surface CdrA molecules could be used to inhibit bacterial biofilm formation or disrupt preexisting biofilms in conjunction with bactericidal antibiotics. These results reveal a functional mechanism for cell-cell interactions within bacterial biofilms and highlight the promise of using inhibitors targeting biofilm cell-cell junctions to prevent or treat problematic, chronic bacterial infections.


Subject(s)
Adhesins, Bacterial/metabolism , Biofilms/growth & development , Pseudomonas aeruginosa/physiology , Adhesins, Bacterial/genetics , Bacterial Adhesion , Cell Membrane , Extracellular Matrix , Gene Expression Regulation, Bacterial , Single-Domain Antibodies
11.
Proc Natl Acad Sci U S A ; 113(20): 5682-7, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27114505

ABSTRACT

The αß T-cell coreceptor CD4 enhances immune responses more than 1 million-fold in some assays, and yet the affinity of CD4 for its ligand, peptide-major histocompatibility class II (pMHC II) on antigen-presenting cells, is so weak that it was previously unquantifiable. Here, we report that a soluble form of CD4 failed to bind detectably to pMHC II in surface plasmon resonance-based assays, establishing a new upper limit for the solution affinity at 2.5 mM. However, when presented multivalently on magnetic beads, soluble CD4 bound pMHC II-expressing B cells, confirming that it is active and allowing mapping of the native coreceptor binding site on pMHC II. Whereas binding was undetectable in solution, the affinity of the CD4/pMHC II interaction could be measured in 2D using CD4- and adhesion molecule-functionalized, supported lipid bilayers, yielding a 2D Kd of ∼5,000 molecules/µm(2) This value is two to three orders of magnitude higher than previously measured 2D Kd values for interacting leukocyte surface proteins. Calculations indicated, however, that CD4/pMHC II binding would increase rates of T-cell receptor (TCR) complex phosphorylation by threefold via the recruitment of Lck, with only a small, 2-20% increase in the effective affinity of the TCR for pMHC II. The affinity of CD4/pMHC II therefore seems to be set at a value that increases T-cell sensitivity by enhancing phosphorylation, without compromising ligand discrimination.


Subject(s)
CD4 Antigens/chemistry , HLA-A24 Antigen/chemistry , HLA-DRB1 Chains/chemistry , Binding Sites , CD4 Antigens/metabolism , HEK293 Cells , HLA-A24 Antigen/metabolism , HLA-DRB1 Chains/metabolism , Humans , Maltose-Binding Proteins/chemistry , Models, Molecular , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Processing, Post-Translational , Protein Stability , Surface Plasmon Resonance
12.
J Biol Chem ; 288(17): 11771-85, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23417675

ABSTRACT

PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.


Subject(s)
Antigen-Presenting Cells , B7-H1 Antigen , Cell Communication , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , T-Lymphocytes , Animals , Antigen-Presenting Cells/chemistry , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , B7-1 Antigen/chemistry , B7-1 Antigen/genetics , B7-1 Antigen/immunology , B7-1 Antigen/metabolism , B7-H1 Antigen/chemistry , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Cell Communication/immunology , Humans , Mice , Models, Immunological , Nuclear Magnetic Resonance, Biomolecular , Programmed Cell Death 1 Ligand 2 Protein/chemistry , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Ligand 2 Protein/immunology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Programmed Cell Death 1 Receptor/chemistry , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Protein Structure, Secondary , Structure-Activity Relationship , Surface Plasmon Resonance , T-Lymphocytes/chemistry , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
13.
Adv Sci (Weinh) ; 11(9): e2303366, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38105421

ABSTRACT

To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (ß-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of ß-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-ß-CoV vaccine.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Viral Vaccines , Humans , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections/prevention & control , SARS-CoV-2 , Middle East Respiratory Syndrome Coronavirus/chemistry , Models, Animal
14.
Open Biol ; 14(6): 230252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835241

ABSTRACT

The Omicron strains of SARS-CoV-2 pose a significant challenge to the development of effective antibody-based treatments as immune evasion has compromised most available immune therapeutics. Therefore, in the 'arms race' with the virus, there is a continuing need to identify new biologics for the prevention or treatment of SARS-CoV-2 infections. Here, we report the isolation of nanobodies that bind to the Omicron BA.1 spike protein by screening nanobody phage display libraries previously generated from llamas immunized with either the Wuhan or Beta spike proteins. The structure and binding properties of three of these nanobodies (A8, H6 and B5-5) have been characterized in detail providing insight into their binding epitopes on the Omicron spike protein. Trimeric versions of H6 and B5-5 neutralized the SARS-CoV-2 variant of concern BA.5 both in vitro and in the hamster model of COVID-19 following nasal administration. Thus, either alone or in combination could serve as starting points for the development of new anti-viral immunotherapeutics.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/chemistry , COVID-19/immunology , COVID-19/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Humans , Antibodies, Viral/immunology , Camelids, New World/immunology , Epitopes/immunology , Epitopes/chemistry , Cricetinae , Protein Binding , Models, Molecular
15.
Nat Commun ; 14(1): 3334, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286554

ABSTRACT

COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Immunotherapy , Mutation , Antibodies, Neutralizing , Antibodies, Viral
16.
Cell Rep ; 42(1): 111903, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36586406

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor-binding domain (RBD). Here, we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared with BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection, which may explain the rapid spread in India, where where there is a high background of Delta infection. ACE2 affinity appears to be prioritized over greater escape.


Subject(s)
COVID-19 , Hepatitis D , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Antibodies
17.
Cell Rep ; 42(4): 112271, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36995936

ABSTRACT

In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum.


Subject(s)
Antibody Formation , COVID-19 , Humans , SARS-CoV-2 , Amino Acid Substitution , Antibodies, Monoclonal , Antibodies, Viral , Antibodies, Neutralizing
18.
Bio Protoc ; 12(9): e4406, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35800465

ABSTRACT

The receptor binding domain (RBD) of the spike protein of SARS-CoV-2 binds angiotensin converting enzyme-2 (ACE-2) on the surface of epithelial cells, leading to fusion, and entry of the virus into the cell. This interaction can be blocked by the binding of llama-derived nanobodies (VHHs) to the RBD, leading to virus neutralisation. Structural analysis of VHH-RBD complexes by X-ray crystallography enables VHH epitopes to be precisely mapped, and the effect of variant mutations to be interpreted and predicted. Key to this is a protocol for the reproducible production and crystallization of the VHH-RBD complexes. Based on our experience, we describe a workflow for expressing and purifying the proteins, and the screening conditions for generating diffraction quality crystals of VHH-RBD complexes. Production and crystallization of protein complexes takes approximately twelve days, from construction of vectors to harvesting and freezing crystals for data collection.

19.
Science ; 377(6604): eabm3125, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35737812

ABSTRACT

Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis.


Subject(s)
COVID-19 , Host-Pathogen Interactions , SARS-CoV-2 , Sialic Acids , Spike Glycoprotein, Coronavirus , COVID-19/transmission , Cryoelectron Microscopy , Genetic Variation , Humans , Nuclear Magnetic Resonance, Biomolecular , Polysaccharides/chemistry , Protein Binding , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Sialic Acids/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
20.
R Soc Open Sci ; 8(9): 211016, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34631127

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in the fluid has important uses in biotechnology, and is integral to many point-of-care SARS-CoV-2 diagnostics. Sandwich enzyme-linked immunosorbent assays (ELISAs) are a sensitive, well-established method of measuring antigens in solutions. They use one ligand to capture and the other ligand to detect the target analyte. Detection is commonly achieved using colorimetric readout obtained upon the reaction of a substrate with HRP-conjugated secondary ligand. Nanobodies, the VHH domain of camelid antibodies, have expanded the repertoire of molecules used in antigen detection. Nanobodies' high affinity for target antigens, their compact structure, their high stability and ease of production has driven research into their use as diagnostic reagents. Guided by a structural understanding of epitopes on the receptor-binding domain of the SARS-CoV-2 Spike protein, we investigated various combinations of engineered nanobodies in a sandwich ELISA to detect the Spike protein of SARS-CoV-2. We have identified an optimal combination of nanobodies. These were selectively functionalized to further improve antigen capture, enabling the measurement of sub-picomolar amounts of SARS-CoV-2 Spike protein in solution. With this combination, the routine detection limit in samples inactivated by heat and detergent corresponded to less than seven focus-forming units of infectious SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL