Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Plant J ; 110(4): 1213-1228, 2022 05.
Article in English | MEDLINE | ID: mdl-35262997

ABSTRACT

Drought stress is a serious factor affecting crop growth and production worldwide. The circadian clock has been identified as key to improving regional adaptability of plants. However, our understanding of the contribution of the circadian clock to drought response and the impacts of drought stress on the circadian clock in plants is still limited. To explore the interactions between the circadian clock and drought stress, foxtail millet seedlings were treated with simulated drought (20% polyethylene glycol-6000) treatment starting at the day (DD) onset zeitgeber time 0 (ZT0, lights on) and at the night (DN) onset zeitgeber time 16 (ZT16, lights off). A high temporal-resolution transcriptomic investigation was performed using DD and DN samples collected at intervals of 2 or 4 h within a 24-h drought-treatment period. Overall, we identified 13 294 drought-responsive genes (DRGs). Among these DRGs, 7931 were common between DD and DN samples, 2638 were specific to DD, and 2725 were specific to DN. Additionally, we identified 1257 circadian genes, of which 67% were DRGs. Interestingly, with drought treatment starting at the day for 8, 12 or 16 h, the circadian phase shifted to 12 h. We also found that the circadian clock led to different day and night drought-responsive pathways. The identification of DRG_Clock (DRG and circadian clock) and DRG_NonClock (DRG and not circadian clock) genes provides a reference for selecting candidate drought resistance genes. Our work reveals the temporal drought-response process and crosstalk between drought stress and the circadian clock in foxtail millet.


Subject(s)
Circadian Clocks , Setaria Plant , Circadian Clocks/genetics , Droughts , Gene Expression Regulation, Plant/genetics , Plant Proteins/metabolism , Setaria Plant/metabolism , Stress, Physiological/genetics , Transcriptome
2.
J Environ Manage ; 346: 119051, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37742564

ABSTRACT

China's agriculture is in the transformation and development stage to adapt to the influences of climate change, technological progress and the requirements for resources and environmental protection. Optimization of cropping structure variation in the new stage is urgent. Our study systematically described the spatiotemporal variation in crop patterns in China from 1985 to 2015 and further analyzed the changes in cropping diversity and dominant cropping structure based on a county-level agricultural database. The results showed that the planted areas of staple crops and oil crops had expanded in three major grain-producing areas. Coarse crop planting has been gradually replaced by staple and oil crops. A slight increasing trend occurred in tuber crop planting in southwestern China, and fiber crop planting had already transferred from eastern to northwestern China. Moreover, cropping diversity has decreased in northern China, especially in the Northeast China Plain and North China Plain, while a slight increase has occurred in the south. Cropping structure has been simplified in past decades and it basically formed a single cropping structure dominated by staple or oil crops. Further cropping structure adjustments should focus on resource-saving, ecofriendly, intensive and efficient industrial coordination goals, adapting to the mechanization, scale and precision developments of agricultural production. It is important to develop a multifunctional innovative farming system and technology to ensure national food security.

3.
J Stroke Cerebrovasc Dis ; 30(10): 106001, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34330021

ABSTRACT

OBJECTIVES: To evaluate the predictive value of dual-energy CT (DECT) quantitative parameters and clinical influence factors for intracerebral hemorrhage (ICH) complications after endovascular treatment in patients with acute ischemic stroke (AIS). METHODS: Seventy-two consecutive patients who underwent brain DECT immediately after endovascular treatment for AIS from November 2017 to October 2019 were included. Retrospectively, the volume of brain parenchymal hyperdensity area (HDA), the maximum iodine concentration, and maximum CT value on DECT images was evaluated and measured by two radiologists blinded to any clinical information independently. Follow-up CT imaging (24-72 h) were used to assess the development of ICH complications. DECT parameters and clinical influence factors were analyzed by Chi-square test or Fisher's exact test and Mann-Whitney U test. Receiver operating characteristic curves were generated for continuous variables. RESULTS: Follow-up CT images confirmed that forty of 72 patients (55.6%) developed ICH. The volume of HDA, median maximum iodine concentration and maximum CT value between ICH group and non-ICH group were significantly different (P < 0.001). Combining the DECT quantitative parameters with clinical predictors, receiver operating characteristic analysis revealed an area under the curve of 0.985, for identifying patients developing ICH with sensitivity, specificity, positive predictive value and negative predictive value were 90%, 100%, 100% and 88.9%, respectively. CONCLUSIONS: Three quantitative parameters of DECT and clinical predictors showed great predictive performance in identifing ICH complications in patients with brain parenchyma HDA after endovascular therapy, which may contribute to better clinical decision-making.


Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Endovascular Procedures/adverse effects , Ischemic Stroke/therapy , Tomography, X-Ray Computed , Aged , Cerebral Hemorrhage/etiology , Clinical Decision-Making , Female , Humans , Ischemic Stroke/complications , Ischemic Stroke/diagnostic imaging , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Risk Assessment , Risk Factors , Treatment Outcome
4.
Plants (Basel) ; 13(19)2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39409570

ABSTRACT

With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity. Epigenetic changes are key regulatory factors in plant stress responses, and DNA methylation is one of the earliest discovered and thoroughly studied mechanisms in these epigenetic regulatory mechanisms. The normal growth of rice is highly dependent on the environment, and changes in the environment can lead to rice sterility and severe yield loss. Changes in the regulation of the DNA methylation pathway are involved in rice's response to stress. Various DNA methylation-regulating protein complexes that function during rice development have been identified. Significant changes in DNA methylation occur in numerous stress-responsive genes, particularly those in the abscisic acid signaling pathway. These findings underscore the complex mechanisms of the abiotic stress response in rice. We propose the effective improvement of tolerance traits by regulating the epigenetic status of rice and emphasize the role of DNA methylation in abiotic stress tolerance, thereby addressing global climate change and ensuring food security.

5.
Chemosphere ; 96: 99-104, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23972732

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) have the potential to produce reactive oxygen species and can be transferred from the mother to the fetal brain. The central nervous system exhibits remarkable plasticity in early life and can be altered significantly by environmental stressors encountered during fetal period. Additionally, prenatal stressors are involved with emotional problems in adulthood. The purpose of the current study is to evaluate whether prenatal exposure to TiO2 NPs could induce oxidative damage in the offspring brain and eventually affect the emotional behaviors in adulthood. The results showed that prenatal exposure to TiO2 NPs impaired the antioxidant status, caused a significant oxidative damage to nucleic acids and lipids in the brain of newborn pups, and enhanced the depressive-like behaviors during adulthood in the force swimming test and the sucrose preference test. These results suggest that the stress during fetal life induced by prenatal exposure to TiO2 NPs could be implicated in depressive-like behaviors in adulthood.


Subject(s)
Nanoparticles/toxicity , Prenatal Exposure Delayed Effects , Titanium/toxicity , Animals , Behavior, Animal/drug effects , Brain/drug effects , Female , Lipids , Male , Oxidation-Reduction , Pregnancy , Rats , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL