Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Oncologist ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014543

ABSTRACT

BACKGROUND: The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) is poor. Secondary brain metastasis (Br-M) occurs in less than 1% of patients. Clinical characteristics and molecular alterations have not been characterized in this rare patients' subset. MATERIALS AND METHODS: The Foundry software platform was used to retrospectively query electronic health records for patients with Br-M secondary to PDAC from 2005 to 2023; clinical, molecular, and overall survival (OS) data were analyzed. RESULTS: Br-M was diagnosed in 44 patients with PDAC. Median follow-up was 78 months; median OS from initial PDAC diagnosis was 47 months. Median duration from PDAC diagnosis to Br-M detection was 24 months; median OS from Br-M diagnosis was 3 months. At Br-M diagnosis, 82% (n = 36) of patients had elevated CA19-9. Lung was the most common preexisting metastatic location (71%) with Br-M, followed by liver (66%). Br-M were most frequently observed in the frontal lobe (34%, n = 15), cerebellar region (23%, n = 10), and leptomeninges (18%, n = 8). KRAS mutations were detected in 94.1% (n = 16) of patients who had molecular data available (n = 17) with KRASG12V being the most frequent subtype 47% (n = 8); KRASG12D in 29% (n = 5); KRASG12R in 18% (n = 3). Patients who underwent Br-M surgical resection (n = 5) had median OS of 8.6 months, while median OS following stereotactic radiosurgery only (n = 11) or whole-brain radiation only (n = 20) was 3.3 and 2.8 months, respectively. CONCLUSION: Br-M is a late PDAC complication, resulting in an extremely poor prognosis especially in leptomeningeal disease. KRAS was mutated in 94.1% of the patients and the KRASG12V subtype was prevalent.

2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834100

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) cells display extensive crosstalk with their surrounding environment to regulate tumor growth, immune evasion, and metastasis. Recent advances have attributed many of these interactions to intercellular communication mediated by small extracellular vesicles (sEVs), involving cancer-associated fibroblasts (CAF). To explore the impact of sEVs on monocyte lineage transition as well as the expression of checkpoint receptors and activation markers, peripheral blood monocytes from healthy subjects were exposed to PDAC-derived sEVs. Additionally, to analyze the role of sEV-associated HA in immune regulation and tissue-resident fibroblasts, monocytes and pancreatic stellate cells were cultured in the presence of PDAC sEVs with or depleted of HA. Exposure of monocytes to sEVs resulted in unique phenotypic changes in HLA-DR, PD-L1, CD86 and CD64 expression, and cytokine secretion that was HA-independent except for IL-1ß and MIP1ß. In contrast, monocyte suppression of autologous T cell proliferation was reduced following exposure to HA-low sEVs. In addition, exposure of stellate cells to sEVs upregulated the secretion of various cytokines, including MMP-9, while removal of HA from PDAC-derived sEVs attenuated the secretion of MMP-9, demonstrating the role of sEV-associated HA in regulating expression of this pro-tumorigenic cytokine from stellate cells. This observation lends credence to the findings from the TCGA database that PDAC patients with high levels of enzymes in the HA synthesis pathway had worse survival rates compared with patients having low expression of these enzymes. PDAC-derived sEVs have an immune modulatory role affecting the activation state of monocyte subtypes. However, sEV-associated HA does not affect monocyte phenotype but alters cytokine secretion and suppression of autologous T cell proliferation and induces secretion of pro-tumorigenic factors by pancreatic stellate cells (PSC), as has been seen following the conversion of PSCs to cancer-associated fibroblasts (CAFs). Interruption of the hexosamine biosynthetic pathway, activated in PDAC producing the key substrate (UDP-GlcNAc) for HA synthesis, thus, represents a potential clinical interception strategy for PDAC patients. Findings warrant further investigations of underlying mechanisms involving larger sample cohorts.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Vesicles , Pancreatic Neoplasms , Humans , Matrix Metalloproteinase 9/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Cytokines/metabolism , Extracellular Vesicles/metabolism , Tumor Microenvironment , Pancreatic Stellate Cells
3.
Gastroenterology ; 156(1): 108-118.e4, 2019 01.
Article in English | MEDLINE | ID: mdl-30240661

ABSTRACT

BACKGROUND & AIMS: We aimed to investigate the clinical utility of circulating tumor cell DNA (ctDNA) and exosome DNA (exoDNA) in pancreatic cancer. METHODS: We collected liquid biopsy samples from 194 patients undergoing treatment for localized or metastatic pancreatic adenocarcinoma from April 7, 2015, through October 13, 2017 (425 blood samples collected before [baseline] and during therapy). Additional liquid biopsy samples were collected from 37 disease control individuals. Droplet digital polymerase chain reaction was used to determine KRAS mutant allele fraction (MAF) from ctDNA and exoDNA purified from plasma. For the longitudinal analysis, we analyzed exoDNA and ctDNA in 123 serial blood samples from 34 patients. We performed analysis including Cox regression, Fisher exact test, and Bayesian inference to associate KRAS MAFs in exoDNA and ctDNA with prognostic and predictive outcomes. RESULTS: In the 34 patients with potentially resectable tumors, an increase in exoDNA level after neoadjuvant therapy was significantly associated with disease progression (P = .003), whereas ctDNA did not show correlations with outcomes. Concordance rates of KRAS mutations present in surgically resected tissue and detected in liquid biopsy samples were greater than 95%. On univariate analysis, patients with metastases and detectable ctDNA at baseline status had significantly shorter times of progression-free survival (PFS) (hazard ratio [HR] for death, 1.8; 95% CI, 1.1-3.0; P = .019), and overall survival (OS) (HR, 2.8; 95% CI, 1.4-5.7; P = .0045) compared with patients without detectable ctDNA. On multivariate analysis, MAFs ≥5% in exoDNA were a significant predictor of PFS (HR, 2.28; 95% CI, 1.18-4.40; P = .014) and OS (HR, 3.46; 95% CI, 1.40-8.50; P = .007). A multianalyte approach showed detection of both ctDNA and exoDNA MAFs ≥5% at baseline status to be a significant predictor of OS (HR, 7.73, 95% CI, 2.61-22.91, P = .00002) on multivariate analysis. In the longitudinal analysis, an MAF peak above 1% in exoDNA was significantly associated with radiologic progression (P = .0003). CONCLUSIONS: In a prospective cohort of pancreatic cancer patients, we show how longitudinal monitoring using liquid biopsy samples through exoDNA and ctDNA provides both predictive and prognostic information relevant to therapeutic stratification.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Exosomes/genetics , Mutation , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/blood , Adenocarcinoma/secondary , Adenocarcinoma/therapy , Biomarkers, Tumor/blood , Circulating Tumor DNA/blood , DNA Mutational Analysis , Disease Progression , Exosomes/pathology , Humans , Liquid Biopsy , Neoadjuvant Therapy , Pancreatectomy , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Polymerase Chain Reaction , Predictive Value of Tests , Prospective Studies , Proto-Oncogene Proteins p21(ras)/blood , Risk Factors , Time Factors , Treatment Outcome
4.
J Surg Res ; 243: 90-99, 2019 11.
Article in English | MEDLINE | ID: mdl-31170555

ABSTRACT

BACKGROUND: Portal vein (PV) circulating tumor cells (CTCs) and elevated peripheral blood (PB) levels of biomarkers have been associated with poor outcomes in pancreatic ductal adenocarcinoma (PDAC). Although transforming growth factor-beta (TGFß) is associated with CTCs in breast cancer, there are limited data evaluating a comprehensive biomarker panel and CTCs in PDAC patients. The authors hypothesized that tumor progression biomarkers would be associated with PV CTCs. METHODS: PDAC patients at one institution were enrolled January to August 2018 and underwent preincision PB draws (T0) and on postoperative day 1 (T3), plus intraoperative PV draws before tumor manipulation (T1) and after resection (T2). CTCs were detected using CellSearch. Plasma biomarker levels (pg/mL) were measured with a multiplex bead assay. Patients were divided into two groups: high (≥3 CTCs/7.5 mL blood) versus low (<3). Clinicopathologic variables and biomarkers were compared in the two groups. RESULTS: Fourteen had complete blood draws with PDAC resection, with five demonstrating high CTCs. Fewer patients in the high-CTC group received preoperative radiation (78 versus 20%), whereas more of the high-CTC had pT3 tumors (80 versus 11%) (all P < 0.037). High-CTC patients demonstrated higher TGFß-2 levels (T0 [906 versus 586], T1 [1337 versus 627], T2 [1149 versus 445]), as well as higher TGFß-3 (T0 [320 versus 173], T2 [605 versus 120]) (all P < 0.021). CONCLUSIONS: PDAC patients with high CTCs demonstrated a distinct biomarker profile with elevated PB and PV levels of immunosuppressive cytokines (TGFß-2 and TGFß-3). These exploratory results prompt further study into interrupting TGFß signaling.


Subject(s)
Adenocarcinoma/pathology , Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/pathology , Neoplastic Cells, Circulating , Pancreatectomy , Transforming Growth Factor beta/blood , Adenocarcinoma/blood , Adenocarcinoma/diagnosis , Adenocarcinoma/surgery , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/surgery , Feasibility Studies , Female , Humans , Intraoperative Care , Male , Middle Aged , Pilot Projects , Portal Vein , Prospective Studies , Signal Transduction
5.
Cancer Res ; 84(10): 1719-1732, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38451249

ABSTRACT

Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predicted consensus molecular subtypes in patients with metastatic colorectal cancer. Analysis of plasma evRNA also enabled monitoring of changes in transcriptomic subtype under treatment selection pressure and identification of molecular pathways associated with recurrence. This approach also revealed expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of using transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to the identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling. SIGNIFICANCE: The development of an approach to interrogate molecular subtypes, cancer-associated pathways, and differentially expressed genes through RNA sequencing of plasma extracellular vesicles lays the foundation for liquid biopsy-based longitudinal monitoring of patient tumor transcriptomes.


Subject(s)
Biomarkers, Tumor , Extracellular Vesicles , Gene Expression Profiling , Transcriptome , Humans , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Gene Expression Profiling/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Liquid Biopsy/methods , Colorectal Neoplasms/genetics , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/blood , Neoplasms/pathology
6.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38826212

ABSTRACT

A blood test that enables surveillance for early-stage pancreatic ductal adenocarcinoma (PDAC) is an urgent need. Independent laboratories have reported PDAC biomarkers that could improve biomarker performance over CA19-9 alone, but the performance of the previously reported biomarkers in combination is not known. Therefore, we conducted a coordinated case/control study across multiple laboratories using common sets of blinded training and validation samples (132 and 295 plasma samples, respectively) from PDAC patients and non-PDAC control subjects representing conditions under which surveillance occurs. We analyzed the training set to identify candidate biomarker combination panels using biomarkers across laboratories, and we applied the fixed panels to the validation set. The panels identified in the training set, CA19-9 with CA199.STRA, LRG1, TIMP-1, TGM2, THSP2, ANG, and MUC16.STRA, achieved consistent performance in the validation set. The panel of CA19-9 with the glycan biomarker CA199.STRA improved sensitivity from 0.44 with 0.98 specificity for CA19-9 alone to 0.71 with 0.98 specificity (p < 0.001, 1000-fold bootstrap). Similarly, CA19-9 combined with the protein biomarker LRG1 and CA199.STRA improved specificity from 0.16 with 0.94 sensitivity for CA19-9 to 0.65 with 0.89 sensitivity (p < 0.001, 1000-fold bootstrap). We further validated significantly improved performance using biomarker panels that did not include CA19-9. This study establishes the effectiveness of a coordinated study of previously discovered biomarkers and identified panels of those biomarkers that significantly increased the sensitivity and specificity of early-stage PDAC detection in a rigorous validation trial.

7.
NPJ Precis Oncol ; 8(1): 27, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310130

ABSTRACT

The relevance of KRAS mutation alleles to clinical outcome remains inconclusive in pancreatic adenocarcinoma (PDAC). We conducted a retrospective study of 803 patients with PDAC (42% with metastatic disease) at MD Anderson Cancer Center. Overall survival (OS) analysis demonstrated that KRAS mutation status and subtypes were prognostic (p < 0.001). Relative to patients with KRAS wildtype tumors (median OS 38 months), patients with KRASG12R had a similar OS (median 34 months), while patients with KRASQ61 and KRASG12D mutated tumors had shorter OS (median 20 months [HR: 1.9, 95% CI 1.2-3.0, p = 0.006] and 22 months [HR: 1.7, 95% CI 1.3-2.3, p < 0.001], respectively). There was enrichment of KRASG12D mutation in metastatic tumors (34% vs 24%, OR: 1.7, 95% CI 1.2-2.4, p = 0.001) and enrichment of KRASG12R in well and moderately differentiated tumors (14% vs 9%, OR: 1.7, 95% CI 1.05-2.99, p = 0.04). Similar findings were observed in the external validation cohort (PanCAN's Know Your Tumor® dataset, n = 408).

8.
Cancer Discov ; 13(8): 1844-1861, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37285225

ABSTRACT

Intraductal papillary mucinous neoplasms (IPMN) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The most common subtype of IPMNs harbors a gastric foveolar-type epithelium, and these low-grade mucinous neoplasms are harbingers of IPMNs with high-grade dysplasia and cancer. The molecular underpinning of gastric differentiation in IPMNs is unknown, although identifying drivers of this indolent phenotype might enable opportunities for intercepting progression to high-grade IPMN and cancer. We conducted spatial transcriptomics on a cohort of IPMNs, followed by orthogonal and cross-species validation studies, which established the transcription factor NKX6-2 as a key determinant of gastric cell identity in low-grade IPMNs. Loss of NKX6-2 expression is a consistent feature of IPMN progression, while reexpression of Nkx6-2 in murine IPMN lines recapitulates the aforementioned gastric transcriptional program and glandular morphology. Our study identifies NKX6-2 as a previously unknown transcription factor driving indolent gastric differentiation in IPMN pathogenesis. SIGNIFICANCE: Identification of the molecular features driving IPMN development and differentiation is critical to prevent cancer progression and enhance risk stratification. We used spatial profiling to characterize the epithelium and microenvironment of IPMN, which revealed a previously unknown link between NKX6-2 and gastric differentiation, the latter associated with indolent biological potential. See related commentary by Ben-Shmuel and Scherz-Shouval, p. 1768. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Carcinoma, Pancreatic Ductal , Neoplasms, Cystic, Mucinous, and Serous , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Animals , Mice , Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation/genetics , Pancreas/pathology , Pancreatic Intraductal Neoplasms/genetics , Pancreatic Neoplasms/pathology , Transcriptome , Tumor Microenvironment
9.
Res Sq ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609177

ABSTRACT

The relevance of KRAS mutation alleles to clinical outcome remains inconclusive in pancreatic adenocarcinoma (PDAC). We conducted a retrospective study of 803 PDAC patients (42% with metastatic disease) at MD Anderson Cancer Center. Overall survival (OS) analysis demonstrated that KRAS mutation status and subtypes were prognostic (p<0.001). Relative to patients with KRAS wildtype tumors (median OS 38 months), patients with KRASG12R had a similar OS (median 34 months), while patients with KRASQ61 and KRASG12D mutated tumors had shorter OS (median 20 months [HR: 1.9, 95% CI 1.2-3.0, p=0.006] and 22 months [HR: 1.7, 95% CI 1.3-2.3, p<0.001], respectively). There was enrichment of KRASG12D mutation in metastatic tumors (34% vs 24%, OR: 1.7, 95% CI 1.2-2.4, p=0.001) and enrichment of KRASG12R in well and moderately differentiated tumors (14% vs 9%, OR: 1.7, 95% CI 1.05-2.99, p=0.04). Similar findings were observed in the external validation cohort (PanCAN's Know Your Tumor® dataset, n=408).

10.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645752

ABSTRACT

Background: The development of diverse spatial profiling technologies has provided an unprecedented insight into molecular mechanisms driving cancer pathogenesis. Here, we conducted the first integrated cross-species assessment of spatial transcriptomics and spatial metabolomics alterations associated with progression of intraductal papillary mucinous neoplasms (IPMN), bona fide cystic precursors of pancreatic ductal adenocarcinoma (PDAC). Methods: Matrix Assisted Laster Desorption/Ionization (MALDI) mass spectrometry (MS)-based spatial imaging and Visium spatial transcriptomics (ST) (10X Genomics) was performed on human resected IPMN tissues (N= 23) as well as pancreata from a mutant Kras;Gnas mouse model of IPMN. Findings were further compared with lipidomic analyses of cystic fluid from 89 patients with histologically confirmed IPMNs, as well as single-cell and bulk transcriptomic data of PDAC and normal tissues. Results: MALDI-MS analyses of IPMN tissues revealed long-chain hydroxylated sulfatides, particularly the C24:0(OH) and C24:1(OH) species, to be selectively enriched in the IPMN and PDAC neoplastic epithelium. Integrated ST analyses confirmed that the cognate transcripts engaged in sulfatide biosynthesis, including UGT8, Gal3St1 , and FA2H , were co-localized with areas of sulfatide enrichment. Lipidomic analyses of cystic fluid identified several sulfatide species, including the C24:0(OH) and C24:1(OH) species, to be significantly elevated in patients with IPMN/PDAC compared to those with low-grade IPMN. Targeting of sulfatide metabolism via the selective galactosylceramide synthase inhibitor, UGT8-IN-1, resulted in ceramide-induced lethal mitophagy and subsequent cancer cell death in vitro , and attenuated tumor growth of mutant Kras;Gnas allografts. Transcript levels of UGT8 and FA2H were also selectively enriched in PDAC transcriptomic datasets compared to non-cancerous areas, and elevated tumoral UGT8 was prognostic for poor overall survival. Conclusion: Enhanced sulfatide metabolism is an early metabolic alteration in cystic pre-cancerous lesions of the pancreas that persists through invasive neoplasia. Targeting sulfatide biosynthesis might represent an actionable vulnerability for cancer interception.

11.
J Environ Sci Health B ; 47(1): 51-8, 2012.
Article in English | MEDLINE | ID: mdl-22022788

ABSTRACT

Fluoxetine (FLX), a selective serotonin reuptake inhibitor, is among the top 100 drugs prescribed annually in the United States and the United Kingdom and is one of many pharmaceutical products that have been detected in global surface waters. Our study used sublethal concentrations to assess the impact of FLX exposure on sheepshead minnow (Cyprinodon variegatus) locomotor behavior. Exposures lasted for 56 hours, and fish were recorded for locomotor behavior assessment at six timepoints between 1-56 h post-dose. Behavior was recorded to quantify locomotor activity using line crossing counts. Animals treated with 300 µg L(-1) FLX exhibited reduced locomotor activity at 1, 25, 32, 49 and 56 h post-dose. An EC(25) value of 2 µg L(-1) (lower and upper 95 % confidence limits at 1.3, 43 µg L(-1), respectively) was determined for locomotor activity at 32 h of exposure. Changes in locomotor activity due to FLX exposure may have implications for the ecological response of populations to other natural and anthropogenic stressors.


Subject(s)
Fluoxetine/pharmacology , Killifishes/physiology , Motor Activity/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Water Pollutants, Chemical/pharmacology , Animals , Environmental Monitoring , Water Pollution, Chemical/analysis
12.
Cancer Discov ; 12(10): 2330-2349, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35849783

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has few effective treatments. Immunotherapy, an attractive alternative strategy, remains challenging with the lack of knowledge on the tumor-infiltrating lymphocyte (TIL) landscape in PDAC. To generate a reference of T-cell subpopulations, we profiled 80,000 T cells from 57 PDAC samples, 22 uninvolved/normal samples, and cultured TIL using single-cell transcriptomic and T-cell receptor analysis. These data revealed 20 cell states and heterogeneous distributions of TIL populations. The CD8+ TIL contained a putative transitional GZMK+ population based on T-cell receptor clonotype sharing, and cell-state trajectory analysis showed similarity to a GZMB+PRF1+ cytotoxic and a CXCL13+ dysfunctional population. Statistical analysis suggested that certain TIL states, such as dysfunctional and inhibitory populations, often occurred together. Finally, analysis of cultured TIL revealed that high-frequency clones from effector populations were preferentially expanded. These data provide a framework for understanding the PDAC TIL landscape for future TIL use in immunotherapy for PDAC. SIGNIFICANCE: To improve the efficacy of immunotherapy in PDAC, there is a great need to understand the PDAC TIL landscape. This study represents a reference of PDAC TIL subpopulations and their relationships and provides a foundation upon which to base future immunotherapeutic efforts. This article is highlighted in the In This Issue feature, p. 2221.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Humans , Lymphocytes, Tumor-Infiltrating , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Receptors, Antigen, T-Cell , Pancreatic Neoplasms
13.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36282600

ABSTRACT

BACKGROUNDPancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with unpredictable responses to chemotherapy. Approaches to assay patient tumors before treatment and identify effective treatment regimens based on tumor sensitivities are lacking. We developed an organoid-based platform (OBP) to visually quantify patient-derived organoid (PDO) responses to drug treatments and associated tumor-stroma modulation for personalized PDAC therapy.METHODSWe retrospectively quantified apoptotic responses and tumor-stroma cell proportions in PDOs via 3D immunofluorescence imaging through annexin A5, α-smooth muscle actin (α-SMA), and cytokeratin 19 (CK-19) levels. Simultaneously, an ex vivo organoid drug sensitivity assay (ODSA) was used to measure responses to standard-of-care regimens. Differences between ODSA results and patient tumor responses were assessed by exact McNemar's test.RESULTSImmunofluorescence signals, organoid growth curves, and Ki-67 levels were measured and authenticated through the OBP for up to 14 days. ODSA drug responses were not different from patient tumor responses, as reflected by CA19-9 reductions following neoadjuvant chemotherapy (P = 0.99). PDOs demonstrated unique apoptotic and tumor-stroma modulation profiles (P < 0.0001). α-SMA/CK-19 ratio levels of more than 1.0 were associated with improved outcomes (P = 0.0179) and longer parental patient survival by Kaplan-Meier analysis (P = 0.0046).CONCLUSIONHeterogenous apoptotic drug responses and tumor-stroma modulation are present in PDOs after standard-of-care chemotherapy. Ratios of α-SMA and CK-19 levels in PDOs are associated with patient survival, and the OBP could aid in the selection of personalized therapies to improve the efficacy of systemic therapy in patients with PDAC.FUNDINGNIH/National Cancer Institute grants (K08CA218690, P01 CA117969, R50 CA243707-01A1, U54CA224065), the Skip Viragh Foundation, the Bettie Willerson Driver Cancer Research Fund, and a Cancer Center Support Grant for the Flow Cytometry and Cellular Imaging Core Facility (P30CA16672).


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Precision Medicine , Retrospective Studies , Imaging, Three-Dimensional , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Organoids/pathology , Pancreatic Neoplasms
14.
J Undergrad Neurosci Educ ; 9(2): A75-83, 2011.
Article in English | MEDLINE | ID: mdl-23493950

ABSTRACT

The Symposium for Young Neuroscientists and Professors of the Southeast (SYNAPSE; synapse.cofc.edu) was designed to encourage contacts among faculty and students interested in neuroscience. Since its inception in 2003, the SYNAPSE conference has consistently drawn faculty and undergraduate interest from the region. This unique meeting provides undergraduates with a valuable opportunity for neuroscience education; students interact with noted neuroscience faculty, present research results, obtain feedback from neuroscientists at other institutions, and form connections with other neuroscientists in the region. Additionally, SYNAPSE allows undergraduate students and faculty to attend workshops and panel discussions about issues related to professional skills and career options. The SYNAPSE conference currently travels among host institutions in the southeastern United States in two-year cycles. This article briefly describes the genesis of SYNAPSE and reviews SYNAPSE conferences from 2006 through 2010. The goal of this paper is to highlight key issues organizers have experienced launching, sustaining, and hosting this regional undergraduate neuroscience conference as well as assist faculty to develop similar conferences.

15.
Cancer Prev Res (Phila) ; 14(7): 729-740, 2021 07.
Article in English | MEDLINE | ID: mdl-33893071

ABSTRACT

Early detection of pancreatic ductal adenocarcinoma (PDAC) is key to improving patient outcomes; however, PDAC is usually diagnosed late. Therefore, blood-based minimally invasive biomarker assays for limited volume clinical samples are urgently needed. A novel miRNA profiling platform (Abcam Fireplex-Oncology Panel) was used to investigate the feasibility of developing early detection miRNA biomarkers with 20 µL plasma from a training set (58 stage II PDAC cases and 30 controls) and two validation sets (34 stage II PDAC cases and 25 controls; 44 stage II PDAC cases and 18 controls). miR-34a-5p [AUC = 0.77; 95% confidence interval (CI), 0.66-0.87], miR-130a-3p (AUC = 0.74; 95% CI, 0.63-0.84), and miR-222-3p (AUC = 0.70; 95% CI, 0.58-0.81) were identified as significantly differentially abundant in plasma from stage II PDAC versus controls. Although none of the miRNAs individually outperformed the currently used serologic biomarker for PDAC, carbohydrate antigen 19-9 (CA19-9), combining the miRNAs with CA 19-9 improved AUCs from 0.89 (95% CI, 0.81-0.95) for CA 19-9 alone to 0.92 (95% CI, 0.86-0.97), 0.94 (95% CI, 0.89-0.98), and 0.92 (95% CI, 0.87-0.97), respectively. Gene set enrichment analyses of transcripts correlated with high and low expression of the three miRNAs in The Cancer Genome Atlas PDAC sample set. These miRNA biomarkers, assayed in limited volume plasma together with CA19-9, discriminate stage II PDAC from controls with good sensitivity and specificity. Unbiased profiling of larger cohorts should help develop an informative early detection biomarker assay for diagnostic settings. PREVENTION RELEVANCE: Development of minimally invasive biomarker assays for detection of premalignant disease and early-stage pancreatic cancer is key to improving patient survival. This study describes a limited volume plasma miRNA biomarker assay that can detect early-stage resectable pancreatic cancer in clinical samples necessary for effective prevention and clinical intervention.


Subject(s)
CA-19-9 Antigen/blood , Carcinoma, Pancreatic Ductal/diagnosis , Early Detection of Cancer/methods , MicroRNAs/blood , Pancreatic Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Blood Specimen Collection/methods , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Case-Control Studies , Datasets as Topic , Feasibility Studies , Female , Humans , Male , Middle Aged , Neoplasm Staging , Pancreas/pathology , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , ROC Curve , Young Adult
16.
Cancers (Basel) ; 12(12)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291471

ABSTRACT

Previously, we characterized qualitative imaging-based subtypes of pancreatic ductal adenocarcinoma (PDAC) on computed tomography (CT) scans. Conspicuous (high delta) PDAC tumors are more likely to have aggressive biology and poorer clinical outcomes compared to inconspicuous (low delta) tumors. Here, we developed a quantitative classification of this imaging-based subtype (quantitative delta; q-delta). Retrospectively, baseline pancreatic protocol CT scans of three cohorts (cohort#1 = 101, cohort#2 = 90 and cohort#3 = 16 [external validation]) of patients with PDAC were qualitatively classified into high and low delta. We used a voxel-based method to volumetrically quantify tumor enhancement while referencing normal-pancreatic-parenchyma and used machine learning-based analysis to build a predictive model. In addition, we quantified the stromal content using hematoxylin- and eosin-stained treatment-naïve PDAC sections. Analyses revealed that PDAC quantitative enhancement values are predictive of the qualitative delta scoring and were used to build a classification model (q-delta). Compared to high q-delta, low q-delta tumors were associated with improved outcomes, and the q-delta class was an independent prognostic factor for survival. In addition, low q-delta tumors had higher stromal content and lower cellularity compared to high q-delta tumors. Our results suggest that q-delta classification provides a clinically and biologically relevant tool that may be integrated into ongoing and future clinical trials.

17.
Parkinsonism Relat Disord ; 15(1): 64-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18358756

ABSTRACT

There are quantifiable abnormalities in water diffusion properties of the white matter in thalamic and prefrontal areas in patients with idiopathic dystonia (ID). However, it is unclear which pathways are disrupted in these patients. Using probabilistic tractography of high resolution DTI, we reconstructed thalamic prefrontal pathways in seven patients with ID and seven matched controls. Resulting fibers were registered onto the stereotaxic space and submitted to a voxel-wise statistical analysis comparing patients and controls. Patients with ID exhibited less thalamic prefrontal connections, particularly involving fibers traveling from the thalamus to the middle frontal gyrus. These results corroborate neurophysiologic findings of reduced and asynchronous thalamic prefrontal input, and emphasize the structural correlates of the pathophysiology of ID.


Subject(s)
Brain Injuries/pathology , Dystonic Disorders/pathology , Prefrontal Cortex/pathology , Thalamus/pathology , Adult , Aged , Brain Injuries/etiology , Brain Mapping , Case-Control Studies , Dystonic Disorders/complications , Female , Functional Laterality , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Neural Pathways/pathology
19.
Biomicrofluidics ; 13(4): 044111, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31462955

ABSTRACT

Primary cancers disseminate both single circulating tumor cells (CTCs) and CTC "clusters," the latter of which have been shown to demonstrate greater metastatic propensity and adverse impact on prognosis. Many devices developed to isolate single CTCs also capture CTC clusters, but there is translational potential for a platform specifically designed to isolate CTC clusters. Herein, we introduce our microfluidic device for isolating CTC clusters ("Microfluidic Isolation of CTC Clusters" or MICC), which is equipped with ∼10 000 trap chambers that isolate tumor cell clusters based on their large sizes and dynamic force balance against a pillar obstacle in the trap chamber. Whole blood is injected, followed by a wash step to remove blood cells and a final backflush to release intact clusters for downstream analysis. Using clusters from tumor cell-line and confocal microscopy, we verified the ability of the MICC platform to specifically capture tumor cell clusters in the trap chambers. Our flow rate optimization experiments identified 25 µl/min for blood injection, 100 µl/min as wash flow rate, and 300 µl/min as the release flow rate - indicating that 1 ml of whole blood can be processed in less than an hour. Under these optimal flow conditions, we assessed the MICC platform's capture and release performance using blood samples spiked with different concentrations of clusters, revealing a capture efficiency of 66%-87% and release efficiency of 76%-90%. The results from our study suggest that the MICC platform has the potential to isolate CTC clusters from cancer patient blood, enabling it for clinical applications in cancer management.

20.
Clin Cancer Res ; 25(9): 2745-2754, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30617132

ABSTRACT

PURPOSE: The CA19-9 biomarker is elevated in a substantial group of patients with pancreatic ductal adenocarcinoma (PDAC), but not enough to be reliable for the detection or diagnosis of the disease. We hypothesized that a glycan called sTRA (sialylated tumor-related antigen) is a biomarker for PDAC that improves upon CA19-9. EXPERIMENTAL DESIGN: We examined sTRA and CA19-9 expression and secretion in panels of cell lines, patient-derived xenografts, and primary tumors. We developed candidate biomarkers from sTRA and CA19-9 in a training set of 147 plasma samples and used the panels to make case-control calls, based on predetermined thresholds, in a 50-sample validation set and a blinded, 147-sample test set. RESULTS: The sTRA glycan was produced and secreted by pancreatic tumors and models that did not produce and secrete CA19-9. Two biomarker panels improved upon CA19-9 in the training set, one optimized for specificity, which included CA19-9 and 2 versions of the sTRA assay, and another optimized for sensitivity, which included 2 sTRA assays. Both panels achieved statistical improvement (P < 0.001) over CA19-9 in the validation set, and the specificity-optimized panel achieved statistical improvement (P < 0.001) in the blinded set: 95% specificity and 54% sensitivity (75% accuracy), compared with 97%/30% (65% accuracy). Unblinding produced further improvements and revealed independent, complementary contributions from each marker. CONCLUSIONS: sTRA is a validated serological biomarker of PDAC that yields improved performance over CA19-9. The new panels may enable surveillance for PDAC among people with elevated risk, or improved differential diagnosis among patients with suspected pancreatic cancer.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/blood , Biomarkers, Tumor/blood , CA-19-9 Antigen/blood , Carcinoma, Pancreatic Ductal/diagnosis , N-Acetylneuraminic Acid/chemistry , Pancreatic Neoplasms/diagnosis , Aged , Animals , Carcinoma, Pancreatic Ductal/blood , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Mice , Middle Aged , Pancreatic Neoplasms/blood , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL