Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters

Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; : e202412542, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039626

ABSTRACT

Ascorbic acid (AA) is the most widely used reductant for noble metal nanoparticle (NP) synthesis. Despite the synthetic relevance, its aqueous chemistry remains misunderstood, due in part to various assumptions about its reduction pathway which are insufficiently supported by experimental evidence. This study aims to provide an understanding of the complex chemistry associated with AA under aqueous conditions. We demonstrate that (i) AA undergoes appreciable degradation in alkaline solution on a timescale relevant to NP synthesis, (ii) contrary to popular belief, AA does not degrade into dehydroascorbic acid (DHA), nor is DHA the oxidized product of AA under noble metal NP synthetic conditions, (iii) DHA, which readily degrades under alkaline conditions, can also effectively reduce metal salt precursors to metal NPs, (iv) neither ascorbate nor dehydroascorbate act as surface capping agents post-synthetically on the NPs (v) AA degradation time greatly affects the morphology and polydispersity of the resultant NP. Results from our mechanistic investigation enabled us to utilize purposefully-aged reductants to achieve control over shape yield and monodispersity in the seed-mediated synthesis of Au nanorods. Our findings have important implications for achieving monodispersed products in the many metal NP synthesis reactions that make use of AA as a reducing agent.

2.
Small ; 18(9): e2106225, 2022 03.
Article in English | MEDLINE | ID: mdl-34910853

ABSTRACT

High-voltage lithium metal batteries (LMBs) are a promising high-energy-density energy storage system. However, their practical implementations are impeded by short lifespan due to uncontrolled lithium dendrite growth, narrow electrochemical stability window, and safety concerns of liquid electrolytes. Here, a porous composite aerogel is reported as the gel electrolyte (GE) matrix, made of metal-organic framework (MOF)@bacterial cellulose (BC), to enable long-life LMBs under high voltage. The effectiveness of suppressing dendrite growth is achieved by regulating ion deposition and facilitating ion conduction. Specifically, two hierarchical mesoporous Zr-based MOFs with different organic linkers, that is, UiO-66 and NH2 -UiO-66, are embedded into BC aerogel skeletons. The results indicate that NH2 -UiO-66 with anionphilic linkers is more effective in increasing the Li+ transference number; the intermolecular interactions between BC and NH2 -UiO-66 markedly increase the electrochemical stability. The resulting GE shows high ionic conductivity (≈1 mS cm-1 ), high Li+ transference number (0.82), wide electrochemical stability window (4.9 V), and excellent thermal stability. Incorporating this GE in a symmetrical Li cell successfully prolongs the cycle life to 1200 h. Paired with the Ni-rich LiNiCoAlO2 (Ni: Co: Al = 8.15:1.5:0.35, NCA) cathode, the NH2 -UiO-66@BC GE significantly improves the capacity, rate performance, and cycle stability, manifesting its feasibility to operate under high voltage.


Subject(s)
Lithium , Metal-Organic Frameworks , Electric Power Supplies , Electrolytes , Phthalic Acids
3.
Inorg Chem ; 60(4): 2503-2513, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33539709

ABSTRACT

Two cadmium coordination polymers, WSU-30 and WSU-31, were synthesized through solvothermal methods by using the low-symmetry TPE-based linker m-H4ETTC. The m-H4ETTC linker and both coordination polymers were fully characterized by using single-crystal X-ray diffraction, infrared spectroscopy, and photoluminescent emission spectroscopy. Structural analysis of WSU-30 and WSU-31 showed that each compound contains previously unknown tetranuclear cadmium(II) secondary building units. The topological analysis revealed that the 4,8-connected net of WSU-30 contains the underlying topology, alb-4,8-P21/c-1, while the mixed linker WSU-31 possesses a 3,10-connected net known as 3,10T31 topology. If the m-ETTC linker is considered as two 3-connected nodes, WSU-30 possesses a very rare 3,3,8-connected 3,3,8T25 topology, and WSU-31 possesses a previously unknown 3,12-connected net, named 3,12T61.

4.
Inorg Chem ; 60(7): 4623-4632, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33709695

ABSTRACT

Aluminum-based metal-organic frameworks (Al-MOFs) have shown promise as commercially valuable materials due to the variety of applications, excellent thermal, hydrothermal, and chemical stabilities, and the abundance of aluminum. In this work, for the first time, we report the solvent-free synthesis of the aluminum trimesate (Al-BTC) MOFs (MIL-100(Al), MIL-96(Al), and MIL-110(Al)) with phase selectivity and high yield. These MOFs were traditionally prepared with HF, HNO3, and bulk solvents, but these methods struggled to produce pure-phase isolations. The solvent-free strategy provides valuable insight into the future industrial scale-up production of the Al-MOFs and promotes the potential commercialization of such materials.

5.
Langmuir ; 35(15): 5271-5280, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30945877

ABSTRACT

This study explores directed noncovalent bonding in the self-assembly of nonplanar aromatic carboxylic acids on gold and graphite surfaces. It is the first step in developing a new design strategy to create two-dimensional surface metal-organic frameworks (SURFMOFs). The acid molecules used are tetraphenylethene-based and are typically employed in the synthesis of three-dimensional (3D) MOF crystalline solids. They include tetraphenylethene tetracarboxylic acid, tetraphenylethene bisphenyl carboxylic acid, and tetraphenylethene tetrakis-phenyl carboxylic acid. The two-dimensional structures formed from these molecules on highly ordered pyrolytic graphite (HOPG) and Au(111) are studied by scanning tunneling microscopy in a solution environment. The process of monolayer formation and final surface linker structures are found to be strongly dependent on the combination of the molecule and substrate used and are discussed in terms of intermolecular and molecule-substrate interactions, bonding geometry, and symmetry of the acid molecules. In the case of linker self-assembly on HOPG, the molecule-substrate interactions play a significant role in the resulting surface structure. When the acid molecules are adsorbed on Au(111), the intermolecular interactions tend to dominate over the weaker molecule-substrate bonding. Additionally, the interplay of π-π interactions and hydrogen bonding that directs the surface self-assembly on different supports can be modified by varying the linker concentration. This is particularly applicable for the case of the acid molecules adsorbing on the Au(111) substrate. Precise control over predesigned surface structures and orientation of the nonplanar aromatic carboxylic linkers open up an exciting prospect for manipulating the direction of SURFMOF growth in two dimensions and potentially in 3D.

6.
ACS Mater Au ; 4(2): 224-237, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38496053

ABSTRACT

Porous liquids (PLs), which are solvent-based systems that contain permanent porosity due to the incorporation of a solid porous host, are of significant interest for the capture of greenhouse gases, including CO2. Type 3 PLs formed by using metal-organic frameworks (MOFs) as the nanoporous host provide a high degree of chemical turnability for gas capture. However, pore aperture fluctuation, such as gate-opening in zeolitic imidazole framework (ZIF) MOFs, complicates the ability to keep the MOF pores available for gas adsorption. Therefore, an understanding of the solvent molecular size required to ensure exclusion from MOFs in ZIF-based Type 3 PLs is needed. Through a combined computational and experimental approach, the solvent-pore accessibility of exemplar MOF ZIF-8 was examined. Density functional theory (DFT) calculations identified that the lowest-energy solvent-ZIF interaction occurred at the pore aperture. Experimental density measurements of ZIF-8 dispersed in various-sized solvents showed that ZIF-8 adsorbed solvent molecules up to 2 Å larger than the crystallographic pore aperture. Density analysis of ZIF dispersions was further applied to a series of possible ZIF-based PLs, including ZIF-67, -69, -71(RHO), and -71(SOD), to examine the structure-property relationships governing solvent exclusion, which identified eight new ZIF-based Type 3 PL compositions. Solvent exclusion was driven by pore aperture expansion across all ZIFs, and the degree of expansion, as well as water exclusion, was influenced by ligand functionalization. Using these results, a design principle was formulated to guide the formation of future ZIF-based Type 3 PLs that ensures solvent-free pores and availability for gas adsorption.

7.
Front Chem ; 12: 1396123, 2024.
Article in English | MEDLINE | ID: mdl-38725653

ABSTRACT

Tetraphenylethene-based ligands with lowered symmetry are promising building blocks for the construction of novel luminescent metal-organic frameworks (MOFs). However, few examples have been reported, and predicting the ligand conformation and the dimensionality of the resulting MOF remains challenging. In order to uncover how synthetic conditions and accessible ligand conformations may affect the resulting MOF structure, four new MOF structures were synthesized under solvothermal conditions using the meta-coordinated tetraphenylethene-based ligand m-ETTC and paddlewheel SBUs composed of Co(II), Cu(II), and Zn(II). WSU-10 (WSU = Washington State University) is formed with either Zn or Cu comprising stacked psuedo-2D layers. The dimensionality of WSU-10 can be intentionally increased through the addition of pyrazine as a pillar ligand into the synthesis, forming the 3D structure WSU-11. The third structure, WSU-20, is formed by the combination of Zn or Co with m-ETTC and is intrinsically 3D without the use of a pillar ligand; interestingly, this is the result of a distortion in the paddlewheel SBU. Finally, Cu was also found to form a new structure (WSU-12), which displays an m-ETTC conformation unique from that found in the other isolated MOFs. Structural features are compared across the series and a mechanistic relationship between WSU-10 and -20 is proposed, providing insight into the factors that can encourage the generation of frameworks with increased dimensionality.

8.
ACS Appl Mater Interfaces ; 15(27): 32792-32802, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37379160

ABSTRACT

Porous liquids (PLs) based on the zeolitic imidazole framework ZIF-8 are attractive systems for carbon capture since the hydrophobic ZIF framework can be solvated in aqueous solvent systems without porous host degradation. However, solid ZIF-8 is known to degrade when exposed to CO2 in wet environments, and therefore the long-term stability of ZIF-8-based PLs is unknown. Through aging experiments, the long-term stability of a ZIF-8 PL formed using the water, ethylene glycol, and 2-methylimidazole solvent system was systematically examined, and the mechanisms of degradation were elucidated. The PL was found to be stable for several weeks, with no ZIF framework degradation observed after aging in N2 or air. However, for PLs aged in a CO2 atmosphere, formation of a secondary phase occurred within 1 day from the degradation of the ZIF-8 framework. From the computational and structural evaluation of the effects of CO2 on the PL solvent mixture, it was identified that the basic environment of the PL caused ethylene glycol to react with CO2 forming carbonate species. These carbonate species further react within the PL to degrade ZIF-8. The mechanisms governing this process involves a multistep pathway for PL degradation and lays out a long-term evaluation strategy of PLs for carbon capture. Additionally, it clearly demonstrates the need to examine the reactivity and aging properties of all components in these complex PL systems in order to fully assess their stabilities and lifetimes.

9.
ACS Appl Mater Interfaces ; 13(44): 51945-51953, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34124879

ABSTRACT

Two new zirconium MOFs, WSU-6 and WSU-7, were synthesized through postsynthetic modifications. In both cases, linker insertion was conducted on a MOF consisting of eight-connected (8-c) Zr6 cluster and four-connected (4-c) ETTC linker, WSU-5, which possesses the uncommon 4, 8-c scu-c topology. The insertion of 1, 4-benzenedicarboxylate into the MOF formed the new 4, 12-c mjh topology, WSU-6. Interestingly, when 2, 6-naphthalenedicarboxylate was inserted, WSU-7 can be formed, which possesses a new 4, 14-c jkz topology. WSU-7 contains very rare 14-c Zr6 secondary building units (SBUs) and is the first MOF to have a Zr6 SBUs with connectivity greater than 12. The three Zr-MOFs were structurally characterized, and the photoluminescence properties of the materials were also studied.

10.
Top Curr Chem (Cham) ; 378(1): 17, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31993845

ABSTRACT

Petroleum is an essential source of energy for our daily life. However, crude oil contains various kinds of sulfur-containing compounds that will form sulfur oxides upon combustion and cause severe environmental problems. To reduce the environmental impact of petroleum energy, the desulfurization of fuels is necessary. Metal-organic frameworks (MOFs), an emerging class of porous materials, have shown great potential in a variety of applications. In this review, we summarize the use of MOFs in the desulfurization of fuels. The scope of this review includes MOFs and MOF-derived materials that have been applied in oxidative desulfurization and adsorptive desulfurization processes. We aim to provide an overview of the progress of MOFs in fuel desulfurization as well as shed light on the development of superior MOF-based materials in the field of desulfurization.

11.
Chem Commun (Camb) ; 54(83): 11817-11820, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-30280725

ABSTRACT

Hierarchically porous UiO-66 (HP-UiO-66) with a particle size of ∼5 nm was synthesized without the use of modulating reagents. The HP-UiO-66 material exhibits good thermal and structural stability, and shows excellent performance in uptaking large molecules and catalyzing the acetalization reaction of furfural.

SELECTION OF CITATIONS
SEARCH DETAIL