ABSTRACT
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease. One of the basic mechanisms in this disease is the autoimmune response against the myelin sheet leading to axonal damage. There is strong evidence showing that this response is regulated by both genetic and environmental factors. In addition, the role of viruses has been extensively studied, especially in the case of human endogenous retroviruses (HERVs). However, although several associations with MS susceptibility, especially in the case of HERV-W family have been observed, the pathogenic mechanisms have remained enigmatic. To clarify these HERV-mediated mechanisms as well as the responsible HERV-W loci, we utilized RNA sequencing data obtained from the white matter of the brain of individuals with and without MS. CIBERSORTx tool was applied to estimate the proportions of neuronal, glial, and endothelial cells in the brain. In addition, the transcriptional activity of 215 HERV-W loci were analyzed. The results indicated that 65 HERV-W loci had detectable expression, of which 14 were differentially expressed between MS and control samples. Of these, 12 HERV-W loci were upregulated in MS. Expression levels of the 8 upregulated HERV-W loci had significant negative correlation with estimated oligodendrocyte proportions, suggesting that they are associated with the dynamics of oligodendrocyte generation and/or maintenance. Furthermore, Gene Set Enrichment Analysis (GSEA) results indicated that expression levels of three upregulated HERV-W loci: 2p16.2, 2q13, and Xq13.3, are associated with suppression of oligodendrocyte development and myelination. Taken together, these data suggest new HERV-W loci candidates that might take part in MS pathogenesis.
Subject(s)
Endogenous Retroviruses , Multiple Sclerosis , Oligodendroglia , White Matter , Humans , Endogenous Retroviruses/genetics , Oligodendroglia/virology , Oligodendroglia/pathology , Oligodendroglia/metabolism , Multiple Sclerosis/virology , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , White Matter/virology , White Matter/pathology , Brain/virology , Brain/pathology , Brain/metabolism , Transcription, Genetic , Female , Male , AdultABSTRACT
INTRODUCTION: Immunosenescence and inflammaging have been implicated in the pathophysiology of frailty. Torquetenovirus (TTV), a single-stranded DNA anellovirus, the major component of the human blood virome, shows an increased replication rate with advancing age. An elevated TTV viremia has been associated with an impaired immune function and an increased risk of mortality in the older population. The objective of this study was to analyze the relation between TTV viremia, physical frailty, and cognitive impairment. METHODS: TTV viremia was measured in 1,131 nonfrail, 45 physically frail, and 113 cognitively impaired older adults recruited in the MARK-AGE study (overall mean age 64.7 ± 5.9 years), and then the results were checked in two other independent cohorts from Spain and Portugal, including 126 frail, 252 prefrail, and 141 nonfrail individuals (overall mean age: 77.5 ± 8.3 years). RESULTS: TTV viremia ≥4log was associated with physical frailty (OR: 4.69; 95% CI: 2.06-10.67, p < 0.0001) and cognitive impairment (OR: 3.49, 95% CI: 2.14-5.69, p < 0.0001) in the MARK-AGE population. The association between TTV DNA load and frailty status was confirmed in the Spanish cohort, while a slight association with cognitive impairment was observed (OR: 1.33; 95% CI: 1.000-1.773), only in the unadjusted model. No association between TTV load and frailty or cognitive impairment was found in the Portuguese sample, although a negative association between TTV viremia and MMSE score was observed in Spanish and Portuguese females. CONCLUSIONS: These findings demonstrate an association between TTV viremia and physical frailty, while the association with cognitive impairment was observed only in the younger population from the MARK-AGE study. Further research is necessary to clarify TTV's clinical relevance in the onset and progression of frailty and cognitive decline in older individuals.
Subject(s)
Cognitive Dysfunction , Frailty , Torque teno virus , Female , Aged , Humans , Aged, 80 and over , Frailty/epidemiology , Torque teno virus/physiology , Viremia/complications , Frail Elderly/psychology , Geriatric Assessment , Cognitive Dysfunction/complications , Cognitive Dysfunction/epidemiologyABSTRACT
BACKGROUND: Obesity is a heritable complex phenotype that can increase the risk of age-related outcomes. Biological age can be estimated from DNA methylation (DNAm) using various "epigenetic clocks." Previous work suggests individuals with elevated weight also display accelerated aging, but results vary by epigenetic clock and population. Here, we utilize the new epigenetic clock GrimAge, which closely correlates with mortality. OBJECTIVES: We aimed to assess the cross-sectional association of body mass index (BMI) with age acceleration in twins to limit confounding by genetics and shared environment. METHODS AND RESULTS: Participants were from the Finnish Twin Cohort (FTC; n = 1424), including monozygotic (MZ) and dizygotic (DZ) twin pairs, and DNAm was measured using the Illumina 450K array. Multivariate linear mixed effects models including MZ and DZ twins showed an accelerated epigenetic age of 1.02 months (p-value = 6.1 × 10-12 ) per one-unit BMI increase. Additionally, heavier twins in a BMI-discordant MZ twin pair (ΔBMI >3 kg/m2 ) had an epigenetic age 5.2 months older than their lighter cotwin (p-value = 0.0074). We also found a positive association between log (homeostatic model assessment of insulin resistance) and age acceleration, confirmed by a meta-analysis of the FTC and two other Finnish cohorts (overall effect = 0.45 years, p-value = 4.1 × 10-25 ) from adjusted models. CONCLUSION: We identified significant associations of BMI and insulin resistance with age acceleration based on GrimAge, which were not due to genetic effects on BMI and aging. Overall, these results support a role of BMI in aging, potentially in part due to the effects of insulin resistance.
Subject(s)
Insulin Resistance , Aging/genetics , Body Mass Index , Cross-Sectional Studies , Epigenesis, Genetic , HumansABSTRACT
The notion that behavioral responses to stimuli can be mediated by separate unconscious and conscious sensory pathways remains popular, but also hotly debated. Recently, Ro and Koenig (2021) reported that when activity in somatosensory cortex was interfered with transcranial magnetic stimulation (TMS), participants could discriminate tactile stimuli they reported not consciously feeling. The study launches an interesting new area of research, helping to uncover mechanisms of unconscious perception that possibly generalize across different sensory modalities. However, we argue here that the study by Ro and Koenig also has several significant shortcomings, and it fails to provide evidence that pathways bypassing primary somatosensory cortex enable unconscious tactile discrimination. By referring to numerous studies investigating TMS-induced blindsight, we outline challenges in demonstrating unconscious sensory pathways using TMS. By facing to these challenges, research investigating TMS-induced numbsense has potential to stimulate progress in stubborn debates and reveal modality-general mechanisms of unconscious perception.
Subject(s)
Transcranial Magnetic Stimulation , Visual Cortex , Consciousness/physiology , Humans , Somatosensory Cortex , Touch , Visual Cortex/physiologyABSTRACT
Immune cells infiltrating the central nervous system (CNS) are involved in the defense against invading microbes as well as in the pathogenesis of neuroinflammatory diseases. In these conditions, the presence of several types of immune and inflammatory cells have been demonstrated. However, some studies have also reported low amounts of immune cells that have been detected in the CNS of healthy individuals, but the cell types present have not been systematically analyzed. To do this, we now used brain samples from The Genotype- Tissue Expression (GTEx) project to analyze the relative abundance of 22 infiltrating leukocyte types using a digital cytometry tool (CIBERSORTx). To characterize cell proportions in different parts of the CNS, samples from 13 different anatomic brain regions were used. The data obtained demonstrated that several leukocyte types were present in the CNS. Six leukocyte types (CD4 memory resting T cells, M0 macrophages, plasma cells, CD8 T cells, CD4 memory activated T cells, and monocytes) were present with a proportion higher than 0.05, i.e. 5%. These six cell types were present in most brain regions with only insignificant variation. A consistent association with age was seen with monocytes, CD8 T cells, and follicular helper T cells. Taken together, these data show that several infiltrating immune cell types are present in the non-diseased CNS tissue and that the proportions of infiltrating cells are affected by age in a manner that is consistent with literature on immunosenecence and inflammaging.
ABSTRACT
BACKGROUND: As we age, the functioning of the human immune system declines. The results of this are increases in morbidity and mortality associated with infectious diseases, cancer, cardiovascular disease, and neurodegenerative disease in elderly individuals, as well as a weakened vaccination response. The aging of the immune system is thought to affect and be affected by the human virome, the collection of all viruses present in an individual. Persistent viral infections, such as those caused by certain herpesviruses, can be present in an individual for long periods of time without any overt pathology, yet are associated with disease in states of compromised immune function. To better understand the effects on human health of such persistent viral infections, we must first understand how the human virome changes with age. We have now analyzed the composition of the whole blood virome of 317 individuals, 21-70 years old, using a metatranscriptomic approach. Use of RNA sequencing data allows for the unbiased detection of RNA viruses and active DNA viruses. RESULTS: The data obtained showed that Epstein-Barr virus (EBV) was the most frequently expressed virus, with other detected viruses being herpes simplex virus 1, human cytomegalovirus, torque teno viruses, and papillomaviruses. Of the 317 studied blood samples, 68 (21%) had EBV expression, whereas the other detected viruses were only detected in at most 6 samples (2%). We therefore focused on EBV in our further analyses. Frequency of EBV detection, relative EBV RNA abundance and the genetic diversity of EBV was not significantly different between age groups (21-59 and 60-70 years old). No significant correlation was seen between EBV RNA abundance and age. Deconvolution analysis revealed a significant difference in proportions of activated dendritic cells, macrophages M1, and activated mast cells between EBV expression positive and negative individuals. CONCLUSIONS: As it is likely that the EBV RNA quantified in this work is derived from reactivation of the latent EBV virus, these data suggest that age does not affect the rate of reactivation nor the genetic landscape of EBV. These findings offer new insight on the genetic diversity of a persistent EBV infection in the long-term.
ABSTRACT
A redox steady state is important in maintaining vital cellular functions and is therefore homeostatically controlled by a number of antioxidative agents, the most important of which are enzymes. Oxidative Stress (OS) is associated with (or/and caused by) excessive production of damaging reactive oxygen and/or nitrogen species (ROS, RNS), which play a role in many pathologies. Because OS is a risk factor for many diseases, much effort (and money) is devoted to early diagnosis and treatment of OS. The desired benefit of the "identify (OS) and treat (by low molecular weight antioxidants, LMWA)" approach is to enable selective treatment of patients under OS. The present work aims at gaining understanding of the benefit of the antioxidants based on interrelationship between the concentration of different OS biomarkers and LMWA. Both the concentrations of a variety of biomarkers and of LMWA were previously determined and some analyses have been published by the MARK-AGE team. For the sake of simplicity, we assume that the concentration of an OS biomarker is a linear function of the concentration of a LMWA (if the association is due to causal relationship). A negative slope of this dependence (and sign of the correlation coefficient) can be intuitively expected for an antioxidant, a positive slope indicates that the LMWA is pro-oxidative, whereas extrapolation of the OS biomarker to [LMWA] = 0 is an approximation of the concentration of the OS biomarker in the absence of the LMWA. Using this strategy, we studied the effects of 12 LMWA (including tocopherols, carotenoids and ascorbic acid) on the OS status, as observed with 8 biomarkers of oxidative damage (including malondialdehyde, protein carbonyls, 3-nitrotyrosine). The results of this communication show that in a cross-sectional study the LMWA contribute little to the redox state and that different "antioxidants" are very different, so that single LMWA treatment of OS is not scientifically justified assuming our simple model. In view of the difficulty of quantitating the OS and the very different effects of various LMWA, the use of the "identify and treat" approach is questionable.
Subject(s)
Antioxidants/pharmacology , Biomarkers/metabolism , Oxidative Stress/drug effects , Antioxidants/chemistry , Cross-Sectional Studies , Humans , Molecular Weight , Oxidation-ReductionABSTRACT
Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 × 10-8) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 × 10-13). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.
Subject(s)
Carotid Intima-Media Thickness , Coronary Artery Disease , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/genetics , Cross-Sectional Studies , Epigenome , Humans , Risk FactorsABSTRACT
BACKGROUND: The human genome contains remnants of ancient retroviral infections called human endogenous retroviruses (HERV). Their expression is often observed in several diseases of autoimmune or inflammatory nature. However, the exact biological mechanisms induced by HERVs are still poorly understood. We have previously shown that several HERVs of the HERV-K (HML-2) family are strongly transcribed in the peripheral blood mononuclear cells (PBMC) derived from young and old individuals. To examine the potential functional consequences of HERV-K (HML-2) expression, we have now analyzed the correlation of its expression with age-associated changes in the transcriptome using gene set enrichment analysis (GSEA). We focused our analysis on the HERV-K (HML-2) provirus at 1q22, also known as ERVK-7. RESULTS: The genes strongly correlating with the expression of HERV-K (HML-2) provirus at 1q22 expression were found to be almost entirely different in young and old individuals. The number of genes strongly correlating (Pearson correlation coefficient ≥ 0.7) with 1q22 expression was 946 genes in the old and 435 in the young, of which only 41 genes correlated strongly in both. Consequently, the related gene ontology (GO) biological processes were different. In the older individuals, many of the highest correlating processes relate to the function of neutrophils. CONCLUSIONS: The results of this work suggest that the biological processes associated with the expression of HERV-K (HML-2) provirus at 1q22 are different in the blood of young and old individuals. Specifically, a strong association was found in the older individuals between neutrophil activity and the expression of the HERV-K (HML-2) provirus at 1q22. These findings offer insight into potential effects of altered HERV expression in older individuals.
ABSTRACT
BACKGROUND: Plasma levels of cell-free DNA (cf-DNA) are known to be elevated in sepsis and high levels are associated with a poor prognosis. Mechanical ventilation affects systemic inflammation in which lung-protective ventilation attenuates the inflammatory response. The aim was to study the effect of a lung protective ventilator regime on arterial and organ-specific venous blood as well as on trans-organ differences in cf-DNA levels in a porcine post-operative sepsis model. METHOD: One group of anaesthetised, domestic-breed, 9-12 weeks old, pigs were ventilated with protective ventilation (VT 6 mL x kg- 1, PEEP 10 cmH2O) n = 20. Another group, ventilated with a medium high tidal volume and lower PEEP, served as a control group (VT 10 mL x kg- 1, PEEP 5 cm H2O) n = 10. Blood samples were taken from four sources: artery, hepatic vein, portal vein and, jugular bulb. A continuous endotoxin infusion at 0.25 µg x kg- 1 x h- 1 for 5 h was started following 2 h of laparotomy, which simulated a surgical procedure. Inflammatory cytokines and cf-DNA in plasma were analysed and trans-organ differences calculated. RESULTS: The protective ventilation group had lower levels of cf-DNA in arterial (p = 0.02) and hepatic venous blood (p = 0.03) compared with the controls. Transhepatic differences in cf-DNA were lower in the protective group, compared with the controls (p = 0.03). No differences between the groups were noted as regards the transcerebral, transsplanchnic or the transpulmonary cf-DNA differences. CONCLUSIONS: Protective ventilation suppresses arterial levels of cf-DNA. The liver seems to be a net contributor to the systemic cf-DNA levels, but this effect is attenuated by protective ventilation.
Subject(s)
Cell-Free Nucleic Acids/blood , Postoperative Complications/blood , Respiration, Artificial , Sepsis/blood , Animals , Cell-Free Nucleic Acids/analysis , Cytokines/blood , Disease Models, Animal , Female , Hepatic Veins , Inflammation , Male , Peak Expiratory Flow Rate , Portal Vein , Swine , Tidal VolumeABSTRACT
The study of blindsight has revealed a seminal dissociation between conscious vision and visually guided behavior: some patients who are blind due to V1 lesions seem to be able to employ unconscious visual information in their behavior. The standard assumption is that these findings generalize to the neurologically healthy. We tested whether unconscious processing of motion is possible without the contribution of V1 in neurologically healthy participants by disturbing activity in V1 using transcranial magnetic stimulation (TMS). Unconscious processing was measured with redundant target effect (RTE), a phenomenon where participants respond faster to two stimuli than to one stimulus, when the task is just to respond as fast as possible when one stimulus or two simultaneous stimuli are presented. We measured the RTE caused by a motion stimulus. V1 activity was interfered with different stimulus onset asynchronies (SOA) to test whether TMS delivered in a specific time window suppresses conscious perception (participant reports seeing only one of the two stimuli) but does not affect unconscious processing (RTE). We observed that at each SOA, when TMS suppressed conscious perception of the stimulus, the RTE was also eliminated. However, when visibility of the redundant target was suppressed with a visual mask, we found unconscious processing of motion. This suggests that unconscious processing of motion depends on V1 in neurologically healthy humans. We conclude that the neural mechanisms that enable motion processing in blindsight are modulated by neuroplastic changes in connectivity between subcortical areas and the visual cortex after the V1 lesion. Neurologically healthy observers cannot process motion unconsciously without functioning of V1.
Subject(s)
Blindness/physiopathology , Motion Perception/physiology , Visual Cortex/physiology , Adult , Consciousness/physiology , Feedback , Female , Humans , Male , Middle Aged , Transcranial Magnetic Stimulation , Unconsciousness , Young AdultABSTRACT
Viral infections are common clinical problems in aged individuals often affecting both mortality and morbidity. The pathogenic mechanisms of the various viruses are not universal in aged individuals, i.e. the clinical disease may be caused by the reactivation of a virus which has stayed in the body in a latent form, or alternatively, the virus is exogenous, derived from the environment. However, it is now evident, that this concept is too simple. Recent data have shown that in our body, even in the blood of healthy individuals, there are large amount of various viruses, which seem to live in balance with our immune defense mechanism (viral normal flora?). Moreover, there is now data suggesting that remnants of ancient retroviral infections in our genome can be activated and show virus-like activities. The possible significance of these findings in immunosenescence is discussed.
ABSTRACT
BACKGROUND: Immunosenescence, i.e. the aging-associated decline of the capacity of the immune system, is characterized by several distinct changes in the number and functions of the immune cells. In the case of B cells, the total number of CD19+ B cells is lower in the blood of elderly individuals than in the younger ones. CD19+ B cell population contains several subsets, which are commonly characterized by the presence of CD27 and IgD molecules, i.e. naïve B cells (CD27- IgD+), IgM memory (CD27+ IgD+), switched memory (CD27+ IgD-) and late memory (CD27- IgD-). This late memory, double negative, population represents cells which are nondividing, but are still able to produce inflammatory mediators and in this way maybe contributing to the aging-associated inflammation, inflammaging. Here we have focused on the role of these B cell subsets in elderly individuals, nonagenarians, in the regulation of inflammation and inflammation-associated decline of bodily functions. As the biological aging process demonstrates gender-specific characteristics, the analyses were performed separately in males and female. RESULTS: A subcohort of The Vitality 90+ study (67 nonagenarians, 22/45 males/females and 40 young controls, 13/27 males/females) was used. Flow cytometric analysis indicated that the total percentage of the CD19+ cells was ca. 50% lower in the nonagenarians than in the controls in both genders. The proportions of these four B cell subsets within the CD19+ populations were very similar in young and old individuals. Thus, it seems that the aging-associated decline of the total CD19+ cells affects similarly all these B cell subsets. To analyze the role of these subsets in the regulation of inflammation, the correlation with IL-6 levels was calculated. A significant correlation was observed only with the percentage of CD27- IgD- cells and only in males. As inflammation is associated with aging-associated functional performance and frailty, the correlations with the Barthel index and frailty score was analyzed. Again, only the CD27- IgD- population demonstrated a strong male-specific correlation. CONCLUSIONS: These data show that the CD27- IgD- B cell subset demonstrates a strong pro-inflammatory effect in nonagenarians, which significantly associates with the decline of the bodily functions. However, this phenomenon is only observed in males.
ABSTRACT
The neural mechanisms underlying conscious and unconscious visual processes remain controversial. Blindsight patients may process visual stimuli unconsciously despite their V1 lesion, promoting anatomical models, which suggest that pathways bypassing the V1 support unconscious vision. On the other hand, physiological models argue that the major geniculostriate pathway via V1 is involved in both unconscious and conscious vision, but in different time windows and in different types of neural activity. According to physiological models, feedforward activity via V1 to higher areas mediates unconscious processes whereas feedback loops of recurrent activity from higher areas back to V1 support conscious vision. With transcranial magnetic stimulation (TMS) it is possible to study the causal role of a brain region during specific time points in neurologically healthy participants. In the present study, we measured unconscious processing with redundant target effect, a phenomenon where participants respond faster to two stimuli than one even when one of the stimuli is not consciously perceived. We tested the physiological feedforward-feedback model of vision by suppressing conscious vision by interfering selectively either with early or later V1 activity with TMS. Our results show that early V1 activity (60ms) is necessary for both unconscious and conscious vision. During later processing stages (90ms), V1 contributes selectively to conscious vision. These findings support the feedforward-feedback-model of consciousness.
Subject(s)
Consciousness/physiology , Unconsciousness , Visual Cortex/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Transcranial Magnetic Stimulation , Young AdultABSTRACT
BACKGROUND: Our aim was to observe factors associated with IL13 rs20541 polymorphism and other factors with or without allergic comorbidities such as subject-reported allergic rhinitis (AR) and/or allergic conjunctivitis (AC) symptoms in adult asthmatics. METHODS: A population-based sample of Finnish adult asthma patients (n = 1,156) and matched controls (n = 1,792) filled in a questionnaire. Asthma was diagnosed based on a typical history of asthma symptoms and lung function tests. Skin prick tests with 17 aeroallergens and blood tests including analysis of interleukin 13 (IL13) rs20541 (G/A) genotypes were performed for a subsample (n = 193). RESULTS: The proportion of asthmatics reporting AR was 61.9% and reporting AC was 40.7%. After adjustments, the presence of the IL13 rs20541A- allele (OR 3.06, 95% CI 1.42-6.58, p = 0.004) or multisensitization (adjusted OR 4.59, 95% CI 1.48-14.26, p = 0.008) was associated with AR/AC asthma. Nasal polyps and acetylsalicylic acid-exacerbated respiratory disease was also associated with AR/AC asthma. CONCLUSIONS: Adult AR/AC asthma could putatively be a phenotype, characterized by the presence of atopic and/or eosinophilic factors and a high prevalence of the IL13 rs20541A- allele. Studies on the mechanisms behind this and in other populations are needed.
Subject(s)
Conjunctivitis, Allergic/genetics , Interleukin-13/genetics , Rhinitis, Allergic/genetics , Adult , Aged , DNA Mutational Analysis , Female , Finland , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Polymorphism, Single NucleotideABSTRACT
BACKGROUND: Changes in DNA methylation are among the mechanisms contributing to the ageing process. We sought to identify ageing-associated DNA methylation changes at single-CpG-site resolution in blood leukocytes and to ensure that the observed changes were not due to differences in the proportions of leukocytes. The association between DNA methylation changes and gene expression levels was also investigated in the same individuals. RESULTS: We identified 8540 high-confidence ageing-associated CpG sites, 46% of which were hypermethylated in nonagenarians. The hypermethylation-associated genes belonged to a common category: they were predicted to be regulated by a common group of transcription factors and were enriched in a related set of GO terms and canonical pathways. Conversely, for the hypomethylation-associated genes only a limited set of GO terms and canonical pathways were identified. Among the 8540 CpG sites associated with ageing, methylation level of 377 sites was also associated with gene expression levels. These genes were enriched in GO terms and canonical pathways associated with immune system functions, particularly phagocytosis. CONCLUSIONS: We find that certain ageing-associated immune-system impairments may be mediated via changes in DNA methylation. The results also imply that ageing-associated hypo- and hypermethylation are distinct processes: hypermethylation could be caused by programmed changes, whereas hypomethylation could be the result of environmental and stochastic processes.
Subject(s)
Aging/genetics , DNA Methylation , Gene Expression , Aged, 80 and over , CpG Islands , Female , Genome, Human , Humans , Male , Molecular Sequence Annotation , Sex FactorsABSTRACT
BACKGROUND: Infection with human cytomegalovirus (CMV) affects the function and composition of the immune system during ageing. In addition to the presence of the pathogen, the strength of the immune response, as measured by the anti-CMV IgG titre, has a significant effect on age-related pathogenesis. High anti-CMV IgG titres have been associated with increased mortality and functional impairment in the elderly. In this study, we were interested in identifying the molecular mechanisms that are associated with the strength of the anti-CMV response by examining the gene expression profiles that are associated with the level of the anti-CMV IgG titre. RESULTS: The level of the anti-CMV IgG titre is associated with the expression level of 663 transcripts in nonagenarians. These transcripts and their corresponding pathways are, for the most part, associated with metabolic functions, cell development and proliferation and other basic cellular functions. However, no prominent associations with the immune system were found, and no associated transcripts were found in young controls. CONCLUSIONS: The lack of defence pathways associated with the strength of the anti-CMV response can indicate that the compromised immune system can no longer defend itself against the CMV infection. Our data imply that the association between high anti-CMV IgG titres and increased mortality and frailty is mediated by basic cellular processes.
ABSTRACT
Growth differentiation factor-15 (GDF15) might be involved in the development of cognitive frailty and depression. Therefore, we evaluated cross-sectional associations of plasma GDF15 with combined cognitive-frailty-and-depression in older (i.e. ≥ 55 years) and younger adults of the MARK-AGE study. In the present work, samples and data of MARK-AGE ("European study to establish bioMARKers of human AGEing") participants (N = 2736) were analyzed. Cognitive frailty was determined by the global cognitive functioning score (GCF) and depression by the Self-Rating Depression Scale (SDS score). Adults were classified into three groups: (I) neither-cognitive-frailty-nor-depression, (II) either-cognitive-frailty-or-depression or (III) both-cognitive-frailty-and-depression. Cross-sectional associations were determined by unadjusted and by age, BMI, sex, comorbidities and hsCRP-adjusted linear and logistic regression analyses. Cognitive frailty, depression, age and GDF15 were significantly related within the whole study sample. High GDF15 levels were significantly associated with both-cognitive-frailty-and-depression (adjusted ß = 0.177 [0.044 - 0.310], p = 0.009), and with low GCF scores and high SDS scores. High GDF15 concentrations and quartiles were significantly associated with higher odds to have both-cognitive-frailty-and-depression (adjusted odds ratio = 2.353 [1.267 - 4.372], p = 0.007; and adjusted odds ratio = 1.414 [1.025 - 1.951], p = 0.035, respectively) independent of age, BMI, sex, comorbidities and hsCRP. These associations remained significant when evaluating older adults. We conclude that plasma GDF15 concentrations are significantly associated with combined cognitive-frailty-and-depression status and, with cognitive frailty and depressive symptoms separately in old as well as young community-dwelling adults.
Subject(s)
Frailty , Humans , Aged , Frail Elderly/psychology , Depression/epidemiology , C-Reactive Protein , Cross-Sectional Studies , Cognition , Growth Differentiation Factor 15ABSTRACT
Recent studies have shown that elevated concentrations of unconjugated bilirubin (UCB) may be a protective host factor against the development of noncommunicable diseases (NCDs), whereas low levels of UCB are associated with the opposite effect. The results of this European study, in which 2,489 samples were tested for their UCB concentration using high-performance liquid chromatography (HPLC) and additional data from the MARK-AGE database were used for analysis, provide further evidence that elevated UCB concentrations are linked to a lower risk of developing NCDs and may act as a predictive marker of biological aging as individuals with elevated UCB concentrations showed favorable outcomes in metabolic health and oxidative-stress-related biomarkers. These findings underline the significance of studying individuals with moderate hyperbilirubinemia and investigate UCB routinely, also in the setting of aging, since this condition affects millions of people worldwide but has been underrepresented in clinical research and practice until now.