Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Mol Cell ; 84(7): 1377-1391.e6, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38423013

ABSTRACT

Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.


Subject(s)
Chromothripsis , Proteome , Humans , Proteome/genetics , Proteome/metabolism , Proteomics , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA Damage/genetics
2.
Haematologica ; 109(4): 1082-1094, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37941406

ABSTRACT

Oral azacitidine (oral-Aza) treatment results in longer median overall survival (OS) (24.7 vs. 14.8 months in placebo) in patients with acute myeloid leukemia (AML) in remission after intensive chemotherapy. The dosing schedule of oral-Aza (14 days/28-day cycle) allows for low exposure of Aza for an extended duration thereby facilitating a sustained therapeutic effect. However, the underlying mechanisms supporting the clinical impact of oral-Aza in maintenance therapy remain to be fully understood. In this preclinical work, we explore the mechanistic basis of oral-Aza/extended exposure to Aza through in vitro and in vivo modeling. In cell lines, extended exposure to Aza results in sustained DNMT1 loss, leading to durable hypomethylation, and gene expression changes. In mouse models, extended exposure to Aza, preferentially targets immature leukemic cells. In leukemic stem cell (LSC) models, the extended dose of Aza induces differentiation and depletes CD34+CD38- LSC. Mechanistically, LSC differentiation is driven in part by increased myeloperoxidase (MPO) expression. Inhibition of MPO activity either by using an MPO-specific inhibitor or blocking oxidative stress, a known mechanism of MPO, partly reverses the differentiation of LSC. Overall, our preclinical work reveals novel mechanistic insights into oral-Aza and its ability to target LSC.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Animals , Mice , Humans , Azacitidine/pharmacology , Azacitidine/therapeutic use , Antigens, CD34/metabolism , Leukemia, Myeloid, Acute/genetics , Peroxidase , Stem Cells/metabolism
3.
Blood ; 138(3): 234-245, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34292323

ABSTRACT

Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent azacytidine, achieves complete remission with or without count recovery in ∼70% of treatment-naive elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that venetoclax directly activated T cells to increase their cytotoxicity against acute myeloid leukemia (AML) in vitro and in vivo. Venetoclax enhanced T-cell effector function by increasing reactive oxygen species generation through inhibition of respiratory chain supercomplexes formation. In addition, azacytidine induced a viral mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T cell-mediated cytotoxicity. Similar findings were seen in patients treated with venetoclax, as this treatment increased reactive oxygen species generation and activated T cells. Collectively, this study presents a new immune-mediated mechanism of action for venetoclax and azacytidine in the treatment of AML and highlights a potential combination of venetoclax and adoptive cell therapy for patients with AML.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/pharmacology , T-Lymphocytes/drug effects , Adult , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cells, Cultured , Humans , Immunity, Cellular/drug effects , Leukemia, Myeloid, Acute/immunology , Reactive Oxygen Species/immunology , Sulfonamides/therapeutic use , T-Lymphocytes/immunology , Tumor Cells, Cultured
4.
Blood ; 136(1): 81-92, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32299104

ABSTRACT

Through a clustered regularly insterspaced short palindromic repeats (CRISPR) screen to identify mitochondrial genes necessary for the growth of acute myeloid leukemia (AML) cells, we identified the mitochondrial outer membrane protein mitochondrial carrier homolog 2 (MTCH2). In AML, knockdown of MTCH2 decreased growth, reduced engraftment potential of stem cells, and induced differentiation. Inhibiting MTCH2 in AML cells increased nuclear pyruvate and pyruvate dehydrogenase (PDH), which induced histone acetylation and subsequently promoted the differentiation of AML cells. Thus, we have defined a new mechanism by which mitochondria and metabolism regulate AML stem cells and gene expression.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/physiology , Neoplasm Proteins/physiology , Acetylation , Animals , CRISPR-Cas Systems , Cell Differentiation , Cell Line, Tumor , Cell Nucleus/metabolism , Fetal Blood/cytology , Gene Expression Regulation, Leukemic/genetics , Gene Knockdown Techniques , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Myeloid-Lymphoid Leukemia Protein/physiology , Oncogene Proteins, Fusion/physiology , Protein Processing, Post-Translational , Pyruvic Acid/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology
5.
Proteomics ; 19(24): e1900139, 2019 12.
Article in English | MEDLINE | ID: mdl-31617661

ABSTRACT

A number of unique proteases localize to specific sub-compartments of the mitochondria, but the functions of these enzymes are poorly defined. Here, in vivo proximity-dependent biotinylation (BioID) is used to map the interactomes of seven proteases localized to the mitochondrial intermembrane space (IMS). In total, 802 high confidence proximity interactions with 342 unique proteins are identified. While all seven proteases co-localized with the IMS markers OPA1 and CLPB, 230 of the interacting partners are unique to just one or two protease bait proteins, highlighting the ability of BioID to differentiate unique interactomes within the confined space of the IMS. Notably, high-temperature requirement peptidase 2 (HTRA2) interacts with eight of 13 components of the mitochondrial intermembrane space bridging (MIB) complex, a multiprotein assembly essential for the maintenance of mitochondrial cristae structure. Knockdown of HTRA2 disrupts cristae in HEK 293 and OCI-AML2 cells, and leads to increased intracellular levels of the MIB subunit IMMT. Using a cell-free assay it is demonstrated that HTRA2 can degrade recombinant IMMT but not two other core MIB complex subunits, SAMM50 and CHCHD3. The IMS protease interactome thus represents a rich dataset that can be mined to uncover novel IMS protease biology.


Subject(s)
ATP-Dependent Proteases/metabolism , High-Temperature Requirement A Serine Peptidase 2/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Proteome/metabolism , High-Temperature Requirement A Serine Peptidase 2/antagonists & inhibitors , High-Temperature Requirement A Serine Peptidase 2/genetics , Humans , Membrane Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Protein Interaction Maps , RNA, Small Interfering/genetics
6.
Blood ; 129(19): 2657-2666, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28283480

ABSTRACT

Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2'3'-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2'3'-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML.


Subject(s)
DNA, Mitochondrial/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Oxidative Phosphorylation , Phosphotransferases/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , DNA Replication , Humans , Mice, SCID , NM23 Nucleoside Diphosphate Kinases/metabolism , Nucleoside-Phosphate Kinase/metabolism , Signal Transduction , Tumor Cells, Cultured , Zalcitabine/metabolism
7.
Haematologica ; 104(5): 963-972, 2019 05.
Article in English | MEDLINE | ID: mdl-30573504

ABSTRACT

Mitochondrial DNA encodes 13 proteins that comprise components of the respiratory chain that maintain oxidative phosphorylation. The replication of mitochondrial DNA is performed by the sole mitochondrial DNA polymerase γ. As acute myeloid leukemia (AML) cells and stem cells have an increased reliance on oxidative phosphorylation, we sought to evaluate polymerase γ inhibitors in AML. The thymidine dideoxynucleoside analog, alovudine, is an inhibitor of polymerase γ. In AML cells, alovudine depleted mitochondrial DNA, reduced mitochondrial encoded proteins, decreased basal oxygen consumption, and decreased cell proliferation and viability. To evaluate the effects of polymerase γ inhibition with alovudine in vivo, mice were xenografted with OCI-AML2 cells and then treated with alovudine. Systemic administration of alovudine reduced leukemic growth without evidence of toxicity and decreased levels of mitochondrial DNA in the leukemic cells. We also showed that alovudine increased the monocytic differentiation of AML cells. Genetic knockdown and other chemical inhibitors of polymerase γ also promoted AML differentiation, but the effects on AML differentiation were independent of reductions in oxidative phosphorylation or respiratory chain proteins. Thus, we have identified a novel mechanism by which mitochondria regulate AML fate and differentiation independent of oxidative phosphorylation. Moreover, we highlight polymerase γ inhibitors, such as alovudine, as novel therapeutic agents for AML.


Subject(s)
Cell Differentiation/drug effects , DNA Polymerase gamma/antagonists & inhibitors , Dideoxynucleosides/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mitochondria/pathology , Monocytes/pathology , Oxidative Phosphorylation/drug effects , Animals , Antiviral Agents/pharmacology , Apoptosis , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondria/drug effects , Mitochondria/metabolism , Monocytes/drug effects , Monocytes/metabolism , Thymidine/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Blood ; 127(13): 1676-86, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-26825710

ABSTRACT

The transcription factor c-Maf is extensively involved in the pathophysiology of multiple myeloma (MM), a fatal malignancy of plasma cells. In the present study, affinity chromatography and mass spectrometry were used to identify c-Maf ubiquitination-associated proteins, from which the E3 ligase HERC4 was found to interact with c-Maf and catalyzed its polyubiquitination and subsequent proteasome-mediated degradation. HERC4 mediated polyubiquitination at K85 and K297 in c-Maf, and this polyubiquitination could be prevented by the isopeptidase USP5. Further analysis on the NCI-60 cell line collection revealed that RPMI 8226, a MM-derived cell line, expressed the lowest level of HERC4. Primary bone marrow analysis revealed HERC4 expression was high in normal bone marrow, but was steadily decreased during myelomagenesis. These findings suggested HERC4 played an important role in MM progression. Moreover, ectopic HERC4 expression decreased MM proliferation in vitro, and delayed xenograft tumor growth in vivo. Therefore, modulation of c-Maf ubiquitination by targeting HERC4 may represent a new therapeutic modality for MM.


Subject(s)
Cell Proliferation , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Proto-Oncogene Proteins c-maf/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination , Animals , Cells, Cultured , HEK293 Cells , HeLa Cells , Heterografts , Humans , Mice , Mice, Nude , Mice, SCID , NIH 3T3 Cells , Neoplasm Transplantation , Ubiquitin/metabolism
9.
Blood ; 125(13): 2120-30, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25631767

ABSTRACT

Mitochondrial respiration is a crucial component of cellular metabolism that can become dysregulated in cancer. Compared with normal hematopoietic cells, acute myeloid leukemia (AML) cells and patient samples have higher mitochondrial mass, without a concomitant increase in respiratory chain complex activity. Hence these cells have a lower spare reserve capacity in the respiratory chain and are more susceptible to oxidative stress. We therefore tested the effects of increasing the electron flux through the respiratory chain as a strategy to induce oxidative stress and cell death preferentially in AML cells. Treatment with the fatty acid palmitate induced oxidative stress and cell death in AML cells, and it suppressed tumor burden in leukemic cell lines and primary patient sample xenografts in the absence of overt toxicity to normal cells and organs. These data highlight a unique metabolic vulnerability in AML, and identify a new therapeutic strategy that targets abnormal oxidative metabolism in this malignancy.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Oxidative Stress/physiology , Oxygen Consumption , Cell Death , Cell Respiration , Electron Transport , Humans , Mitochondrial Size , Oxygen Consumption/physiology , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
11.
Apoptosis ; 20(8): 1099-108, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25998464

ABSTRACT

AML (acute myeloid leukemia) cells have a unique reliance on mitochondrial metabolism and fatty acid oxidation (FAO). Thus, blocking FAO is a potential therapeutic strategy to target these malignant cells. In the current study, we assessed plasma membrane carnitine transporters as novel therapeutic targets for AML. We examined the expression of the known plasma membrane carnitine transporters, OCTN1, OCTN2, and CT2 in AML cell lines and primary AML samples and compared expression to normal hematopoietic cells. Of the three carnitine transporters, CT2 demonstrated the greatest differential expression between AML and normal cells. Using shRNA, we knocked down CT2 and demonstrated that target knockdown impaired the function of the transporter. In addition, knockdown of CT2 reduced the growth and viability of AML cells with high expression of CT2 (OCI-AML2 and HL60), but not low expression. CT2 knockdown reduced basal oxygen consumption without a concomitant increase in glycolysis. Thus, CT2 may be a novel target for a subset of AML.


Subject(s)
Cell Proliferation/drug effects , Leukemia, Myeloid, Acute/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , RNA, Small Interfering/pharmacology , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Gene Knockdown Techniques , Humans , Oxygen/metabolism
12.
Apoptosis ; 20(6): 811-20, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25820141

ABSTRACT

Mitochondria contain multiple copies of their own 16.6 kb circular genome. To explore the impact of mitochondrial DNA (mtDNA) damage on mitochondrial (mt) function and viability of AML cells, we screened a panel of DNA damaging chemotherapeutic agents to identify drugs that could damage mtDNA. We identified bleomycin as an agent that damaged mtDNA in AML cells at concentrations that induced cell death. Bleomycin also induced mtDNA damage in primary AML samples. Consistent with the observed mtDNA damage, bleomycin reduced mt mass and basal oxygen consumption in AML cells. We also demonstrated that the observed mtDNA damage was functionally important for bleomycin-induced cell death. Finally, bleomycin delayed tumor growth in xenograft mouse models of AML and anti-leukemic concentrations of the drug induced mtDNA damage in AML cells preferentially over normal lung tissue. Taken together, mtDNA-targeted therapy may be an effective strategy to target AML cells and bleomycin could be useful in the treatment of this disease.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Bleomycin/pharmacology , DNA Damage/drug effects , DNA, Mitochondrial/metabolism , Leukemia, Myeloid, Acute/metabolism , Animals , Antibiotics, Antineoplastic/therapeutic use , Bleomycin/therapeutic use , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Heterografts , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice, SCID , Mitochondria/drug effects , Neoplasm Transplantation
13.
Apoptosis ; 20(7): 948-59, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25832785

ABSTRACT

To identify new biological vulnerabilities in acute myeloid leukemia, we screened a library of natural products for compounds cytotoxic to TEX leukemia cells. This screen identified the novel small molecule Deoxysappanone B 7,4' dimethyl ether (Deox B 7,4), which possessed nanomolar anti-leukemic activity. To determine the anti-leukemic mechanism of action of Deox B 7,4, we conducted a genome-wide screen in Saccharomyces cerevisiae and identified enrichment of genes related to mitotic cell cycle as well as vacuolar acidification, therefore pointing to microtubules and vacuolar (V)-ATPase as potential drug targets. Further investigations into the mechanisms of action of Deox B 7,4 and a related analogue revealed that these compounds were reversible microtubule inhibitors that bound near the colchicine site. In addition, Deox B 7,4 and its analogue increased lysosomal V-ATPase activity and lysosome acidity. The effects on microtubules and lysosomes were functionally important for the anti-leukemic effects of these drugs. The lysosomal effects were characteristic of select microtubule inhibitors as only the Deox compounds and nocodazole, but not colchicine, vinca alkaloids or paclitaxel, altered lysosome acidity and induced lysosomal disruption. Thus, our data highlight a new mechanism of action of select microtubule inhibitors on lysosomal function.


Subject(s)
Chromones/pharmacology , Guaiacol/analogs & derivatives , Leukemia, Myeloid, Acute/metabolism , Lysosomes/drug effects , Tubulin Modulators/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Guaiacol/pharmacology , Humans , Leukemia, Myeloid, Acute/pathology , Lysosomes/chemistry , Lysosomes/metabolism , Mice , Saccharomyces cerevisiae , Vacuolar Proton-Translocating ATPases/metabolism
14.
Am J Hematol ; 89(4): 363-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24273151

ABSTRACT

The antimycotic ciclopirox olamine is an intracellular iron chelator that has anticancer activity in vitro and in vivo. We developed an oral formulation of ciclopirox olamine and conducted the first-in-human phase I study of this drug in patients with relapsed or refractory hematologic malignancies (Trial registration ID: NCT00990587). Patients were treated with 5-80 mg/m² oral ciclopirox olamine once daily for five days in 21-day treatment cycles. Pharmacokinetic and pharmacodynamic companion studies were performed in a subset of patients. Following definition of the half-life of ciclopirox olamine, an additional cohort was enrolled and treated with 80 mg/m² ciclopirox olamine four times daily. Adverse events and clinical response were monitored throughout the trial. Twenty-three patients received study treatment. Ciclopirox was rapidly absorbed and cleared with a short half-life. Plasma concentrations of an inactive ciclopirox glucuronide metabolite were greater than those of ciclopirox. Repression of survivin expression was observed in peripheral blood cells isolated from patients treated once daily with ciclopirox olamine at doses greater than 10 mg/m², demonstrating biological activity of the drug. Dose-limiting gastrointestinal toxicities were observed in patients receiving 80 mg/m² four times daily, and no dose limiting toxicity was observed at 40 mg/m² once daily. Hematologic improvement was observed in two patients. Once-daily dosing of oral ciclopirox olamine was well tolerated in patients with relapsed or refractory hematologic malignancies, and further optimization of dosing regimens is warranted in this patient population.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Iron Chelating Agents/therapeutic use , Pyridones/therapeutic use , Salvage Therapy , Administration, Oral , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Ciclopirox , Female , Gastrointestinal Diseases/chemically induced , Gene Expression Regulation, Neoplastic/drug effects , Half-Life , Hematologic Neoplasms/blood , Hematologic Neoplasms/pathology , Humans , Inactivation, Metabolic , Inhibitor of Apoptosis Proteins/genetics , Iron Chelating Agents/administration & dosage , Iron Chelating Agents/adverse effects , Iron Chelating Agents/metabolism , Iron Chelating Agents/pharmacokinetics , Male , Middle Aged , Neoplasm Proteins/genetics , Pyridones/adverse effects , Pyridones/blood , Pyridones/pharmacokinetics , RNA, Messenger/blood , RNA, Neoplasm/blood , Survivin , Treatment Outcome
15.
Blood ; 117(6): 1986-97, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21135258

ABSTRACT

D-cyclins are universally dysregulated in multiple myeloma and frequently overexpressed in leukemia. To better understand the role and impact of dysregulated D-cyclins in hematologic malignancies, we conducted a high-throughput screen for inhibitors of cyclin D2 transactivation and identified 8-ethoxy-2-(4-fluorophenyl)-3-nitro-2H-chromene (S14161), which inhibited the expression of cyclins D1, D2, and D3 and arrested cells at the G(0)/G(1) phase. After D-cyclin suppression, S14161 induced apoptosis in myeloma and leukemia cell lines and primary patient samples preferentially over normal hematopoietic cells. In mouse models of leukemia, S14161 inhibited tumor growth without evidence of weight loss or gross organ toxicity. Mechanistically, S14161 inhibited the activity of phosphoinositide 3-kinase in intact cells and the activity of the phosphoinositide 3-kinases α, ß, δ, and γ in a cell-free enzymatic assay. In contrast, it did not inhibit the enzymatic activities of other related kinases, including the mammalian target of rapamycin, the DNA-dependent protein kinase catalytic subunit, and phosphoinositide-dependent kinase-1. Thus, we identified a novel chemical compound that inhibits D-cyclin transactivation via the phosphoinositide 3-kinase/protein kinase B signaling pathway. Given its potent antileukemia and antimyeloma activity and minimal toxicity, S14161 could be developed as a novel agent for blood cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Cyclin D/antagonists & inhibitors , Cyclin D/genetics , Leukemia/drug therapy , Leukemia/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Phosphoinositide-3 Kinase Inhibitors , Transcriptional Activation/drug effects , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Base Sequence , Benzopyrans/chemistry , Biological Transport, Active/drug effects , Cell Line, Tumor , Cell Membrane/metabolism , DNA Primers/genetics , Drug Evaluation, Preclinical , G1 Phase/drug effects , Humans , K562 Cells , Leukemia/genetics , Leukemia/pathology , Mice , Mice, SCID , Molecular Structure , Multiple Myeloma/genetics , Multiple Myeloma/pathology , NIH 3T3 Cells , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
16.
Apoptosis ; 17(7): 666-78, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22488300

ABSTRACT

Acquisition of resistance to anchorage dependant cell death, a process termed anoikis, is a requirement for cancer cell metastasis. However, the molecular determinants of anoikis resistance and sensitivity are poorly understood. To better understand resistance to anoikis we conducted a genome wide lentiviral shRNA screen to identify genes whose knockdown render anoikis-sensitive RWPE-1 prostate cells resistant to anoikis. RWPE-1 cells were infected with a pooled lentiviral shRNA library with 54,021 shRNA targeting 11,255 genes. After infection, an anoikis-resistant cell population was selected and shRNA sequences were amplified and sequenced. Thirty-four shRNA sequences reproducibly protected RWPE-1 cells from anoikis after culture under suspension conditions including the top validated hit, α/ß hydrolase domain containing 4 (ABHD4). In validation studies, ABHD4 knockdown inhibited anoikis in RWPE-1 cells as well as anoikis sensitive NP69 nasopharyngeal and OVCAR3 ovarian cancer cells, while over-expression of the gene increased sensitivity. Induction of anoikis after ABHD4 knockdown was associated with cleavage of PARP and activation of caspases-3, but was independent in changes of FLIP, FAK and Src expression. Interestingly, induction of anoikis after ABHD4 knockdown was independent of the known role of ABHD4 in the anandamide synthesis pathway and the generation of glycerophospho-N-acyl ethanolamines. Thus, ABHD4 is a novel genetic regulator of anoikis sensitivity.


Subject(s)
Anoikis/genetics , Genetic Testing , Genome, Human/genetics , Hydrolases/metabolism , RNA, Small Interfering/metabolism , Arachidonic Acids/biosynthesis , Arachidonic Acids/chemistry , Cell Line, Tumor , Endocannabinoids/biosynthesis , Endocannabinoids/chemistry , Female , Gene Knockdown Techniques , Humans , Hydrolases/genetics , Lentivirus/genetics , Lysophospholipase , Male , Polyunsaturated Alkamides/chemistry , Protein Structure, Tertiary
17.
Blood ; 115(23): 4824-33, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20348394

ABSTRACT

On-patent and off-patent drugs with previously unrecognized anticancer activity could be rapidly repurposed for this new indication given their prior toxicity testing. To identify such compounds, we conducted chemical screens and identified the antihelmintic flubendazole. Flubendazole induced cell death in leukemia and myeloma cell lines and primary patient samples at nanomolar concentrations. Moreover, it delayed tumor growth in leukemia and myeloma xenografts without evidence of toxicity. Mechanistically, flubendazole inhibited tubulin polymerization by binding tubulin at a site distinct from vinblastine. In addition, cells resistant to vinblastine because of overexpression of P-glycoprotein remained fully sensitive to flubendazole, indicating that flubendazole can overcome some forms of vinblastine resistance. Given the different mechanisms of action, we evaluated the combination of flubendazole and vinblastine in vitro and in vivo. Flubendazole synergized with vinblastine to reduce the viability of OCI-AML2 cells. In addition, combinations of flubendazole with vinblastine or vincristine in a leukemia xenograft model delayed tumor growth more than either drug alone. Therefore, flubendazole is a novel microtubule inhibitor that displays preclinical activity in leukemia and myeloma.


Subject(s)
Antinematodal Agents/pharmacology , Leukemia/drug therapy , Mebendazole/analogs & derivatives , Microtubules/metabolism , Multiple Myeloma/drug therapy , Vinca Alkaloids/pharmacology , Animals , Antinematodal Agents/agonists , Antinematodal Agents/therapeutic use , Antineoplastic Agents, Phytogenic/agonists , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Death , Cell Survival , Dose-Response Relationship, Drug , Drug Synergism , Female , HeLa Cells , Humans , Leukemia/metabolism , Male , Mebendazole/agonists , Mebendazole/pharmacology , Mebendazole/therapeutic use , Mice , Multiple Myeloma/metabolism , U937 Cells , Vinblastine/agonists , Vinblastine/pharmacology , Vinblastine/therapeutic use , Xenograft Model Antitumor Assays/methods
18.
Blood ; 115(11): 2251-9, 2010 Mar 18.
Article in English | MEDLINE | ID: mdl-20075161

ABSTRACT

The proteasomal pathway of protein degradation involves 2 discrete steps: ubiquitination and degradation. Here, we evaluated the effects of inhibiting the ubiquitination pathway at the level of the ubiquitin-activating enzyme UBA1 (E1). By immunoblotting, leukemia cell lines and primary patient samples had increased protein ubiquitination. Therefore, we examined the effects of genetic and chemical inhibition of the E1 enzyme. Knockdown of E1 decreased the abundance of ubiquitinated proteins in leukemia and myeloma cells and induced cell death. To further investigate effects of E1 inhibition in malignancy, we discovered a novel small molecule inhibitor, 3,5-dioxopyrazolidine compound, 1-(3-chloro-4-fluorophenyl)-4-[(5-nitro-2-furyl)methylene]-3,5-pyrazolidinedione (PYZD-4409). PYZD-4409 induced cell death in malignant cells and preferentially inhibited the clonogenic growth of primary acute myeloid leukemia cells compared with normal hematopoietic cells. Mechanistically, genetic or chemical inhibition of E1 increased expression of E1 stress markers. Moreover, BI-1 overexpression blocked cell death after E1 inhibition, suggesting ER stress is functionally important for cell death after E1 inhibition. Finally, in a mouse model of leukemia, intraperitoneal administration of PYZD-4409 decreased tumor weight and volume compared with control without untoward toxicity. Thus, our work highlights the E1 enzyme as a novel target for the treatment of hematologic malignancies.


Subject(s)
Leukemia/enzymology , Leukemia/therapy , Multiple Myeloma/enzymology , Multiple Myeloma/therapy , Ubiquitin-Activating Enzymes/metabolism , Animals , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D3/metabolism , Disease Models, Animal , Drug Screening Assays, Antitumor , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/pathology , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , Hematopoietic System/cytology , Hematopoietic System/drug effects , Humans , Mice , Protein Processing, Post-Translational/drug effects , Small Molecule Libraries/pharmacology , Stress, Physiological/drug effects , Time Factors , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitination/drug effects
19.
Blood ; 116(18): 3593-603, 2010 Nov 04.
Article in English | MEDLINE | ID: mdl-20644115

ABSTRACT

To identify known drugs with previously unrecognized anticancer activity, we compiled and screened a library of such compounds to identify agents cytotoxic to leukemia cells. From these screens, we identified ivermectin, a derivative of avermectin B1 that is licensed for the treatment of the parasitic infections, strongyloidiasis and onchocerciasis, but is also effective against other worm infestations. As a potential antileukemic agent, ivermectin induced cell death at low micromolar concentrations in acute myeloid leukemia cell lines and primary patient samples preferentially over normal hematopoietic cells. Ivermectin also delayed tumor growth in 3 independent mouse models of leukemia at concentrations that appear pharmacologically achievable. As an antiparasitic, ivermectin binds and activates chloride ion channels in nematodes, so we tested the effects of ivermectin on chloride flux in leukemia cells. Ivermectin increased intracellular chloride ion concentrations and cell size in leukemia cells. Chloride influx was accompanied by plasma membrane hyperpolarization, but did not change mitochondrial membrane potential. Ivermectin also increased reactive oxygen species generation that was functionally important for ivermectin-induced cell death. Finally, ivermectin synergized with cytarabine and daunorubicin that also increase reactive oxygen species production. Thus, given its known toxicology and pharmacology, ivermectin could be rapidly advanced into clinical trial for leukemia.


Subject(s)
Antineoplastic Agents/therapeutic use , Antiparasitic Agents/therapeutic use , Cell Survival/drug effects , Ivermectin/therapeutic use , Leukemia/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antiparasitic Agents/pharmacology , Calcium/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Size/drug effects , Chlorides/metabolism , Cytarabine/pharmacology , Daunorubicin/pharmacology , Drug Synergism , Gene Expression Regulation, Leukemic/drug effects , Humans , Ivermectin/pharmacology , Mice , Mice, SCID , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
20.
Leukemia ; 36(5): 1283-1295, 2022 05.
Article in English | MEDLINE | ID: mdl-35152270

ABSTRACT

AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin ß family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.


Subject(s)
Leukemia, Myeloid, Acute , beta Karyopherins , Active Transport, Cell Nucleus , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Stem Cells/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL