Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Chem Educ ; 100(4): 1511-1522, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37067867

ABSTRACT

This paper introduces hands-on curricular modules integrated with research in atmospheric ice nucleation, which is an important phenomenon potentially influencing global climate change. The primary goal of this work is to promote meaningful laboratory exercises to enhance the competence of students in the fields of science, technology, engineering, and math (STEM) by applying an appropriate methodology to laboratory ice nucleation measurements. To achieve this goal, three laboratory modules were developed with 18 STEM interns and tested by 28 students in a classroom setting. Students were trained to experimentally simulate atmospheric ice nucleation and cloud droplet freezing. For practical training, this work utilized a simple freezing assay device called the West Texas Cryogenic Refrigerator Applied to Freezing Test (WT-CRAFT) system. More specifically, students were provided with hands-on lessons to calibrate WT-CRAFT with deionized water and apply analytical techniques to understand the physicochemical properties of bulk water and droplet freezing. All procedures to implement the developed modules were typewritten during this process, and shareable read-ahead exploration materials were developed and compiled as a curricular product. Additionally, students conducted complementary analyses to identify possible catalysts of heterogeneous freezing in the water. The water analyses included: pH, conductivity, surface tension, and electron microscopy-energy-dispersive X-ray spectroscopy. During the data and image analysis process, students learned how to analyze droplet freezing spectra as a function of temperature, screen and interpret the data, perform uncertainty analyses, and estimate ice nucleation efficiency using computer programs. Based on the formal program assessment of learning outcomes and direct (yet deidentified) student feedback, we broadly achieved our goals to (1) improve their problem-solving skills by combining multidisciplinary science and math skills and (2) disseminate data and results with variability and uncertainty. The developed modules can be applied at any institute to advance undergraduate and graduate curricula in environmental science.

2.
Article in English | MEDLINE | ID: mdl-33743054

ABSTRACT

Running speed is a measure of whole-organism performance reflecting relative fitness. For spiders, increased speed translates into enhanced prey capture, mating success and reduced predation risk. In male spiders, leg length increases dramatically with the molt to sexual maturity. To determine how changes in leg length and body mass with sexual maturity influence running performance, we compared allometric and kinematic changes in a species without extreme size sexual dimorphism (SSD): male and female Delena cancerides (Sparassidae) during their penultimate and adult instars. Spiders in each age-sex class were filmed running in the lab, and body morphometrics, maximum velocity, body lengths per second, acceleration, stride length and stride frequency were compared. At maturity, females increase in overall size, whereas male's leg length increases over 30% with little associated increase in body mass or overall size. Adult male legs are similar in length to those of the adult females and maximum velocity did not differ between age-sex classes. However, both male age-classes have higher velocity scaled as body lengths per second than females, due to their lighter mass. Thus, for sparassids spiders without large SSD, lower mass and longer legs translate into lower energetic costs of running distances for males.


Subject(s)
Running/physiology , Sex Characteristics , Sexual Maturation/physiology , Spiders/physiology , Walking Speed/physiology , Age Factors , Animals , Female , Male , Spiders/anatomy & histology
3.
J Infect Dis ; 221(7): 1135-1145, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31776569

ABSTRACT

Initiation of antiretroviral therapy (ART) in early compared with chronic human immunodeficiency virus (HIV) infection is associated with a smaller HIV reservoir. This longitudinal analysis of 60 individuals who began ART during primary HIV infection (PHI) investigates which pre- and posttherapy factors best predict HIV DNA levels (a correlate of reservoir size) after treatment initiation during PHI. The best predictor of HIV DNA at 1 year was pre-ART HIV DNA, which was in turn significantly associated with CD8 memory T-cell differentiation (effector memory, naive, and T-bet-Eomes- subsets), CD8 T-cell activation (CD38 expression) and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) expression on memory T cells. No associations were found for any immunological variables after 1 year of ART. Levels of HIV DNA are determined around the time of ART initiation in individuals treated during PHI. CD8 T-cell activation and memory expansion are linked to HIV DNA levels, suggesting the importance of the initial host-viral interplay in eventual reservoir size.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , DNA, Viral/blood , HIV Infections , Lymphocyte Activation/immunology , Adult , Anti-Retroviral Agents/therapeutic use , Antibodies, Viral/blood , Female , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/immunology , HIV Infections/virology , Humans , Male , Viral Load
4.
Immunity ; 35(1): 10-2, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21777795

ABSTRACT

Deliberate redirection of T cell responses to human immunodeficiency virus-1 might enhance immunity and thus aid viral containment. Dahirel et al. (2011) identify candidate antigens to achieve this with a theory derived from physics.

5.
J Infect Dis ; 217(11): 1782-1792, 2018 05 05.
Article in English | MEDLINE | ID: mdl-29546381

ABSTRACT

Background: Human immunodeficiency virus (HIV)-infected individuals have a higher risk of developing active tuberculosis (TB) than HIV-uninfected individuals, but the mechanisms underpinning this are unclear. We hypothesized that depletion of specific components of Mycobacterium tuberculosis (Mtb)-specific CD4+ and CD8+ T-cell responses contributed to this increased risk. Methods: Mtb-specific T-cell responses in 147 HIV-infected and 44 HIV-uninfected control subjects in a TB-endemic setting in Bloemfontein, South Africa, were evaluated. Using a whole-blood flow cytometry assay, we measured expression of interferon gamma, tumor necrosis factor alpha, interleukin 2, and interleukin 17 in CD4+ and CD8+ T cells in response to Mtb antigens (PPD, ESAT-6/CFP-10 [EC], and DosR regulon-encoded α-crystallin [Rv2031c]). Results: Fewer HIV-infected individuals had detectable CD4+ and CD8+ T-cell responses to PPD and Rv2031c than HIV-uninfected subjects. Mtb-specific T cells showed distinct patterns of cytokine expression comprising both Th1 (CD4 and CD8) and Th17 (CD4) cytokines, the latter at highest frequency for Rv2031c. Th17 antigen-specific responses to all antigens tested were specifically impaired in HIV-infected individuals. Conclusions: HIV-associated impairment of CD4+ and CD8+Mtb-specific T-cell responses is antigen specific, particularly impacting responses to PPD and Rv2031c. Preferential depletion of Th17 cytokine-expressing CD4+ T cells suggests this T-cell subset may be key to TB susceptibility in HIV-infected individuals.


Subject(s)
HIV Infections/immunology , Mycobacterium tuberculosis/immunology , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Tuberculosis/immunology , Adult , Antigens, Bacterial/immunology , Coinfection/immunology , Coinfection/microbiology , Coinfection/virology , Cytokines/immunology , Female , HIV/immunology , HIV Infections/microbiology , Humans , Interferon-gamma/immunology , Male , Middle Aged , South Africa , Tuberculosis/microbiology , Tuberculosis/virology , Young Adult
6.
Retrovirology ; 15(1): 7, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29338738

ABSTRACT

BACKGROUND: The factors determining differential HIV disease outcome among individuals expressing protective HLA alleles such as HLA-B*27:05 and HLA-B*57:01 remain unknown. We here analyse two HIV-infected subjects expressing both HLA-B*27:05 and HLA-B*57:01. One subject maintained low-to-undetectable viral loads for more than a decade of follow up. The other progressed to AIDS in < 3 years. RESULTS: The rapid progressor was the recipient within a known transmission pair, enabling virus sequences to be tracked from transmission. Progression was associated with a 12% Gag sequence change and 26% Nef sequence change at the amino acid level within 2 years. Although next generation sequencing from early timepoints indicated that multiple CD8+ cytotoxic T lymphocyte (CTL) escape mutants were being selected prior to superinfection, < 4% of the amino acid changes arising from superinfection could be ascribed to CTL escape. Analysis of an HLA-B*27:05/B*57:01 non-progressor, in contrast, demonstrated minimal virus sequence diversification (1.1% Gag amino acid sequence change over 10 years), and dominant HIV-specific CTL responses previously shown to be effective in control of viraemia were maintained. Clonal sequencing demonstrated that escape variants were generated within the non-progressor, but in many cases were not selected. In the rapid progressor, progression occurred despite substantial reductions in viral replicative capacity (VRC), and non-progression in the elite controller despite relatively high VRC. CONCLUSIONS: These data are consistent with previous studies demonstrating rapid progression in association with superinfection and that rapid disease progression can occur despite the relatively the low VRC that is typically observed in the setting of multiple CTL escape mutants.


Subject(s)
Disease Progression , HIV Infections/virology , HIV-1/physiology , Superinfection/virology , Amino Acid Substitution , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , Cluster Analysis , Epitopes, T-Lymphocyte/genetics , Genetic Variation , HIV Core Protein p24/genetics , HIV Infections/genetics , HIV Infections/immunology , HIV-1/classification , HIV-1/genetics , HIV-1/immunology , HLA-B Antigens/immunology , High-Throughput Nucleotide Sequencing/methods , Humans , Male , RNA, Viral/blood , RNA, Viral/genetics , Sequence Analysis, RNA , Superinfection/genetics , Superinfection/immunology , T-Lymphocytes, Cytotoxic/immunology , Viral Load , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/genetics
7.
PLoS Pathog ; 12(7): e1005661, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27415828

ABSTRACT

The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/µl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches.


Subject(s)
Biomarkers/analysis , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1 , Adult , Anti-Retroviral Agents/therapeutic use , Antigens, CD/analysis , Antigens, CD/biosynthesis , Antigens, CD/immunology , Disease Progression , Female , Flow Cytometry , HIV Infections/drug therapy , Hepatitis A Virus Cellular Receptor 2/analysis , Hepatitis A Virus Cellular Receptor 2/biosynthesis , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , Lymphocyte Activation/immunology , Male , Programmed Cell Death 1 Receptor/analysis , Programmed Cell Death 1 Receptor/biosynthesis , Programmed Cell Death 1 Receptor/immunology , Lymphocyte Activation Gene 3 Protein
8.
PLoS Genet ; 11(2): e1004914, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25642847

ABSTRACT

The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years.


Subject(s)
Epitopes, T-Lymphocyte/genetics , Gene Products, gag/genetics , HIV Infections/genetics , nef Gene Products, Human Immunodeficiency Virus/immunology , pol Gene Products, Human Immunodeficiency Virus/immunology , Adult , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Female , Gene Products, gag/immunology , HIV Infections/immunology , HIV-1/genetics , HIV-1/immunology , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , T-Lymphocytes, Cytotoxic/immunology , nef Gene Products, Human Immunodeficiency Virus/genetics , pol Gene Products, Human Immunodeficiency Virus/genetics
9.
Immunology ; 152(3): 425-438, 2017 11.
Article in English | MEDLINE | ID: mdl-28640942

ABSTRACT

The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8+ and CD4+ T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8+ and CD4+ repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8+ T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4+ effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8+ and CD4+ repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-ß, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8+ T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Melanoma/therapy , Proteins/pharmacology , Single-Chain Antibodies/pharmacology , Skin Neoplasms/therapy , gp100 Melanoma Antigen/immunology , Apoptosis/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Coculture Techniques , Cytokines/immunology , Cytokines/metabolism , Cytotoxicity, Immunologic/drug effects , Dose-Response Relationship, Drug , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Humans , Immunologic Memory/drug effects , Melanoma/immunology , Melanoma/metabolism , Melanoma/pathology , Phenotype , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Time Factors , gp100 Melanoma Antigen/metabolism
10.
PLoS Pathog ; 11(6): e1004954, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26076345

ABSTRACT

HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression.


Subject(s)
HIV Infections/genetics , HIV-1/physiology , HLA Antigens/genetics , Virus Replication/genetics , Adult , Child , Cohort Studies , Disease Progression , Humans , Polymerase Chain Reaction
11.
J Infect Dis ; 214(3): 379-89, 2016 08 01.
Article in English | MEDLINE | ID: mdl-26951820

ABSTRACT

BACKGROUND: HLA strongly influences human immunodeficiency virus type 1 (HIV-1) disease progression. A major contributory mechanism is via the particular HLA-presented HIV-1 epitopes that are recognized by CD8(+) T-cells. Different populations vary considerably in the HLA alleles expressed. We investigated the HLA-specific impact of the MRKAd5 HIV-1 Gag/Pol/Nef vaccine in a subset of the infected Phambili cohort in whom the disease-susceptible HLA-B*58:02 is highly prevalent. METHODS: Viral loads, CD4(+) T-cell counts, and enzyme-linked immunospot assay-determined anti-HIV-1 CD8(+) T-cell responses for a subset of infected antiretroviral-naive Phambili participants, selected according to sample availability, were analyzed. RESULTS: Among those expressing disease-susceptible HLA-B*58:02, vaccinees had a lower chronic viral set point than placebo recipients (median, 7240 vs 122 500 copies/mL; P = .01), a 0.76 log10 lower longitudinal viremia level (P = .01), and slower progression to a CD4(+) T-cell count of <350 cells/mm(3) (P = .02). These differences were accompanied by a higher Gag-specific breadth (4.5 vs 1 responses; P = .04) and magnitude (2300 vs 70 spot-forming cells/10(6) peripheral blood mononuclear cells; P = .06) in vaccinees versus placebo recipients. CONCLUSIONS: In addition to the known enhancement of HIV-1 acquisition resulting from the MRKAd5 HIV-1 vaccine, these findings in a nonrandomized subset of enrollees show an HLA-specific vaccine effect on the time to CD4(+) T-cell count decline and viremia level after infection and the potential for vaccines to differentially alter disease outcome according to population HLA composition. CLINICAL TRIALS REGISTRATION: NCT00413725, DOH-27-0207-1539.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/prevention & control , HIV Infections/virology , HLA-B Antigens/genetics , SAIDS Vaccines/immunology , Viral Load , Adult , Alleles , CD4 Lymphocyte Count , Enzyme-Linked Immunospot Assay , Female , Humans , Male , Placebos/administration & dosage , SAIDS Vaccines/administration & dosage , Young Adult
12.
Gut ; 64(5): 813-9, 2015 May.
Article in English | MEDLINE | ID: mdl-24996883

ABSTRACT

BACKGROUND: Chronic HCV infection is a leading cause of liver-related morbidity globally. The innate and adaptive immune responses are thought to be important in determining viral outcomes. Polymorphisms associated with the IFNL3 (IL28B) gene are strongly associated with spontaneous clearance and treatment outcomes. OBJECTIVE: This study investigates the importance of HLA genes in the context of genetic variation associated with the innate immune genes IFNL3 and KIR2DS3. DESIGN: We assess the collective influence of HLA and innate immune genes on viral outcomes in an Irish cohort of women (n=319) who had been infected from a single source as well as a more heterogeneous cohort (Swiss Cohort, n=461). In the Irish cohort, a number of HLA alleles are associated with different outcomes, and the impact of IFNL3-linked polymorphisms is profound. RESULTS: Logistic regression was performed on data from the Irish cohort, and indicates that the HLA-A*03 (OR 0.36 (0.15 to 0.89), p=0.027) -B*27 (OR 0.12 (0.03 to 0.45), p=<0.001), -DRB1*01:01 (OR 0.2 (0.07 to 0.61), p=0.005), -DRB1*04:01 (OR 0.31 (0.12 to 0.85, p=0.02) and the CC IFNL3 rs12979860 genotypes (OR 0.1 (0.04 to 0.23), p<0.001) are significantly associated with viral clearance. Furthermore, DQB1*02:01 (OR 4.2 (2.04 to 8.66), p=0.008), KIR2DS3 (OR 4.36 (1.62 to 11.74), p=0.004) and the rs12979860 IFNL3 'T' allele are associated with chronic infection. This study finds no interactive effect between IFNL3 and these Class I and II alleles in relation to viral clearance. There is a clear additive effect, however. Data from the Swiss cohort also confirms independent and additive effects of HLA Class I, II and IFNL3 genes in their prediction of viral outcome. CONCLUSIONS: This data supports a critical role for the adaptive immune response in the control of HCV in concert with the innate immune response.


Subject(s)
Genes, MHC Class II , Genes, MHC Class I , Hepatitis C, Chronic/genetics , Adaptive Immunity/genetics , Adolescent , Adult , Aged , Alleles , Cohort Studies , Female , Genotype , HLA-A3 Antigen/genetics , HLA-B27 Antigen/genetics , HLA-C Antigens/genetics , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , Humans , Immunity, Innate/genetics , Interferons , Interleukins/genetics , Male , Middle Aged , Prognosis , Receptors, KIR/genetics , Viral Load/genetics , Viral Load/immunology , Young Adult
13.
J Pharm Biomed Anal ; 232: 115402, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37141854

ABSTRACT

Efruxifermin (EFX) is a homodimeric human IgG1 Fc-FGF21 fusion protein undergoing investigation for treatment of liver fibrosis due to nonalcoholic steatohepatitis (NASH), a prevalent and serious metabolic disease for which there is no approved treatment. Biological activity of FGF21 requires its intact C-terminus, which enables binding to its obligate co-receptor ß-Klotho on the surface of target cells. This interaction is a prerequisite for FGF21 signal transduction through its canonical FGF receptors: FGFR1c, 2c, and 3c. Therefore, the C-terminus of each FGF21 polypeptide chain must be intact, with no proteolytic truncation, for EFX to exert its pharmacological activity in patients. A sensitive immunoassay for quantification of biologically active EFX in human serum was therefore needed to support pharmacokinetic assessments in patients with NASH. We present a validated noncompetitive electrochemiluminescent immunoassay (ECLIA) that employs a rat monoclonal antibody for specific capture of EFX via its intact C-terminus. Bound EFX is detected by a SULFO-TAG™-conjugated, affinity purified chicken anti-EFX antiserum. The ECLIA reported herein for quantification of EFX demonstrated suitable analytical performance, with a sensitivity (LLOQ) of 20.0 ng/mL, to support reliable pharmacokinetic assessments of EFX. The validated assay was used to quantify serum EFX concentrations in a phase 2a study of NASH patients (BALANCED) with either moderate-to-advanced fibrosis or compensated cirrhosis. The pharmacokinetic profile of EFX was dose-proportional and did not differ between patients with moderate-to-advanced fibrosis and those with compensated cirrhosis. This report presents the first example of a validated pharmacokinetic assay specific for a biologically active Fc-FGF21 fusion protein, as well as the first demonstration of use of a chicken antibody conjugate as a detection reagent specific for an FGF21 analog.


Subject(s)
Immunoassay , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Liver Cirrhosis/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Immunoglobulin G , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Humans , Animals , Rats
14.
PLoS One ; 17(10): e0274289, 2022.
Article in English | MEDLINE | ID: mdl-36301874

ABSTRACT

While the majority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) display mild or no symptoms, rare individuals develop severe disease presenting with multisystem inflammatory syndrome (MIS-C). The reason for variable clinical manifestations is not understood. Here, we carried out TCR sequencing and conducted comparative analyses of TCR repertoires between children with MIS-C (n = 12) and mild (n = 8) COVID-19. We compared these repertoires with unexposed individuals (samples collected pre-COVID-19 pandemic: n = 8) and with the Adaptive Biotechnologies MIRA dataset, which includes over 135,000 high-confidence SARS-CoV-2-specific TCRs. We show that the repertoires of children with MIS-C are characterised by the expansion of TRBV11-2 chains with high junctional and CDR3 diversity. Moreover, the CDR3 sequences of TRBV11-2 clones shift away from SARS-CoV-2 specific T cell clones, resulting in distorted TCR repertoires. In conclusion, our study reports that CDR3-independent expansion of TRBV11-2+ cells, lacking SARS-CoV-2 specificity, defines MIS-C in children.


Subject(s)
COVID-19 , Connective Tissue Diseases , Child , Humans , SARS-CoV-2 , COVID-19/genetics , Pandemics , Receptors, Antigen, T-Cell/genetics , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/genetics
15.
Front Immunol ; 13: 878743, 2022.
Article in English | MEDLINE | ID: mdl-36110857

ABSTRACT

Natural Killer (NK) cells play a key role in controlling HIV replication, with potential downstream impact on the size of the HIV reservoir and likelihood of viral rebound after antiretroviral therapy (ART) cessation. It is therefore important to understand how primary HIV infection (PHI) disrupts NK cell function, and how these functions are restored by early ART. We examined the impact of commencing ART during PHI on phenotypic and functional NK cell markers at treatment initiation (baseline), 3 months, 1 year, and 2 years in seven well-characterised participants in comparison to HIV seronegative volunteers. We then examined how those NK cell properties differentially impacted by ART related to time to viral rebound and HIV DNA levels in 44 individuals from the SPARTAC trial who stopped ART after 48 weeks treatment, started during PHI. NK cell markers that were significantly different between the seven people with HIV (PWH) treated for 2 years and HIV uninfected individuals included NKG2C levels in CD56dim NK cells, Tim-3 expression in CD56bright NK cells, IFN-γ expressed by CD56dim NK cells after IL-12/IL-18 stimulation and the fraction of Eomes-/T-bet+ in CD56dim and CD56bright NK cells. When exploring time to viral rebound after stopping ART among the 44 SPARTAC participants, no single NK phenotypic marker correlated with control. Higher levels of IL-12/IL-18 mediated NK cell degranulation at baseline were associated with longer times to viral rebound after treatment interruption (P=0.028). Additionally, we found higher fractions of CD56dim NK cells in individuals with lower levels of HIV DNA (P=0.048). NKG2A and NKp30 levels in CD56neg NK cells were higher in patients with lower HIV DNA levels (p=0.00174, r=-0.49 and p=0.03, r= -0.327, respectively) while CD27 levels were higher in those with higher levels of HIV DNA (p=0.026). These data show NK cell functions are heterogeneously impacted by HIV infection with a mixed picture of resolution on ART, and that while NK cells may affect HIV DNA levels and time to viral rebound, no single NK cell marker defined delayed viral rebound.


Subject(s)
HIV Infections , DNA/metabolism , HIV Infections/drug therapy , HIV Infections/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Interleukin-12/metabolism , Interleukin-18/metabolism , Killer Cells, Natural/metabolism , T-Box Domain Proteins/metabolism
16.
Clin Cancer Res ; 26(22): 5869-5878, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32816891

ABSTRACT

PURPOSE: Tebentafusp is a first-in-class bispecific fusion protein designed to target gp100 (a melanoma-associated antigen) through a high affinity T-cell receptor (TCR) binding domain and an anti-CD3 T-cell engaging domain, which redirects T cells to kill gp100-expressing tumor cells. Here, we report a multicenter phase I/II trial of tebentafusp in metastatic melanoma (NCT01211262) focusing on the mechanism of action of tebentafusp. PATIENTS AND METHODS: Eighty-four patients with advanced melanoma received tebentafusp. Treatment efficacy, treatment-related adverse events, and biomarker assessments were performed for blood-derived and tumor biopsy samples obtained at baseline and on-treatment. RESULTS: Tebentafusp was generally well-tolerated and active in both patients with metastatic uveal melanoma and patients with metastatic cutaneous melanoma. A 1-year overall survival rate of 65% was achieved for both patient cohorts. On-treatment cytokine measurements were consistent with the induction of IFNγ pathway-related markers in the periphery and tumor. Notably, tebentafusp induced an increase in serum CXCL10 (a T-cell attractant) and a reduction in circulating CXCR3+ CD8+ T cells together with an increase in cytotoxic T cells in the tumor microenvironment. Furthermore, increased serum CXCL10 or the appearance of rash (likely due to cytotoxic T cells targeting gp100-expressing skin melanocytes) showed a positive association with patient survival. CONCLUSIONS: These data suggest that redirecting T cells using a gp100-targeting TCR/anti-CD3 bispecific fusion protein may provide benefit to patients with metastatic melanoma. Furthermore, the activity observed in these two molecularly disparate melanoma classes hints at the broad therapeutic potential of tebentafusp.


Subject(s)
Chemokine CXCL10/blood , Interferon-gamma/blood , Melanoma/drug therapy , Receptors, CXCR3/blood , Recombinant Fusion Proteins/administration & dosage , Adult , Aged , Ataxia Telangiectasia Mutated Proteins/genetics , CD3 Complex/genetics , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Cytotoxicity, Immunologic/drug effects , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunity/drug effects , Male , Melanoma/blood , Melanoma/genetics , Melanoma/pathology , Middle Aged , Neoplasm Proteins/genetics , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/adverse effects , Tumor Microenvironment/drug effects , gp100 Melanoma Antigen/genetics
17.
Hum Mutat ; 30(4): 616-24, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19191322

ABSTRACT

The Single Amino Acid Polymorphism database (SAAPdb) is a new resource for the analysis and visualization of the structural effects of mutations. Our analytical approach is to map single nucleotide polymorphisms (SNPs) and pathogenic deviations (PDs) to protein structural data held within the Protein Data Bank. By mapping mutations onto protein structures, we can hypothesize whether the mutant residues will have any local structural effect that may "explain" a deleterious phenotype. Our prior work used a similar approach to analyze mutations within a single protein. An analysis of the contents of SAAPdb indicates that there are clear differences in the sequence and structural characteristics of SNPs and PDs, and that PDs are more often explained by our structural analysis. This mapping and analysis is a useful resource for the mutation community and is publicly available at http://www.bioinf.org.uk/saap/db/.


Subject(s)
Amino Acids/genetics , Databases, Protein , Polymorphism, Single Nucleotide , Proteins/genetics , Amino Acids/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Internet , Mutation, Missense , Protein Binding , Protein Stability , Protein Structure, Quaternary , Protein Structure, Tertiary , Proteins/chemistry
18.
AIDS ; 33(2): 185-197, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30325764

ABSTRACT

INTRODUCTION: There are few data on the frequency of virological remission in African individuals after treatment with antiretroviral therapy (ART) in primary HIV infection (PHI). METHODS: We studied participants (n = 82) from South Africa and Uganda in Short Pulse Antiretroviral Treatment at HIV-1 Seroconversion, the first trial of treatment interruption in African individuals with PHI randomized to deferred ART or 48 weeks of immediate ART. All were female and infected with non-B HIV subtypes, mainly C. We measured HIV DNA in CD4+ T cells, CD4+ cell count, plasma viral load (pVL), cell-associated HIV RNA and T-cell activation and exhaustion. We explored associations with clinical progression and time to pVL rebound after treatment interruption (n = 22). Data were compared with non-African Short Pulse Antiretroviral Treatment at HIV-1 Seroconversion participants. RESULTS: Pretherapy pVL and integrated HIV DNA were lower in Africans compared with non-Africans (median 4.16 vs. 4.72 log10 copies/ml and 3.07 vs. 3.61 log10 copies/million CD4+ T cells, respectively; P < 0.001). Pre-ART HIV DNA in Africans was associated with clinical progression (P = 0.001, HR per log10 copies/million CD4+ T cells increase (95% CI) 5.38 (1.95-14.79)) and time to pVL rebound (P = 0.034, HR per log10 copies/ml increase 4.33 (1.12-16.84)). After treatment interruption, Africans experienced longer duration of viral remission than non-Africans (P < 0.001; HR 3.90 (1.75-8.71). Five of 22 African participants (22.7%) maintained VL less than 400 copies/ml over a median of 188 weeks following treatment interruption. CONCLUSION: We find evidence of greater probability of virological remission following treatment interruption among African participants, although we are unable to differentiate between sex, ethnicity and viral subtype. The finding warrants further investigation.


Subject(s)
Anti-Retroviral Agents/administration & dosage , Antiretroviral Therapy, Highly Active/methods , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/isolation & purification , Viral Load , Withholding Treatment , Adult , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/virology , Female , Humans , Plasma/virology , South Africa , Uganda , Young Adult
19.
Sci Rep ; 7: 40112, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106051

ABSTRACT

Annually, there are over 2 million incidents of traumatic brain injury (TBI) and treatment options are non-existent. While many TBI studies have focused on the brain, peripheral contributions involving the digestive and immune systems are emerging as factors involved in the various symptomology associated with TBI. We hypothesized that TBI would alter hepatic function, including bile acid system machinery in the liver and brain. The results show activation of the hepatic acute phase response by 2 hours after TBI, hepatic inflammation by 6 hours after TBI and a decrease in hepatic transcription factors, Gli 1, Gli 2, Gli 3 at 2 and 24 hrs after TBI. Bile acid receptors and transporters were decreased as early as 2 hrs after TBI until at least 24 hrs after TBI. Quantification of bile acid transporter, ASBT-expressing neurons in the hypothalamus, revealed a significant decrease following TBI. These results are the first to show such changes following a TBI, and are compatible with previous studies of the bile acid system in stroke models. The data support the emerging idea of a systemic influence to neurological disorders and point to the need for future studies to better define specific mechanisms of action.


Subject(s)
Acute-Phase Reaction/pathology , Brain Injuries, Traumatic/pathology , Carrier Proteins/metabolism , Hypothalamus/pathology , Liver/pathology , Membrane Glycoproteins/metabolism , Neurons/metabolism , Neurons/pathology , Animals , Brain Injuries, Traumatic/complications , Disease Models, Animal , Mice, Inbred C57BL , Time Factors
20.
J Mol Biol ; 429(3): 356-364, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27561707

ABSTRACT

abYsis is a web-based antibody research system that includes an integrated database of antibody sequence and structure data. The system can be interrogated in numerous ways-from simple text and sequence searches to sophisticated queries that apply 3D structural constraints. The publicly available version includes pre-analyzed sequence data from the European Molecular Biology Laboratory European Nucleotide Archive (EMBL-ENA) and Kabat as well as structure data from the Protein Data Bank. A researcher's own sequences can also be analyzed through the web interface. A defining characteristic of abYsis is that the sequences are automatically numbered with a series of popular schemes such as Kabat and Chothia and then annotated with key information such as complementarity-determining regions and potential post-translational modifications. A unique aspect of abYsis is a set of residue frequency tables for each position in an antibody, allowing "unusual residues" (those rarely seen at a particular position) to be highlighted and decisions to be made on which mutations may be acceptable. This is especially useful when comparing antibodies from different species. abYsis is useful for any researcher specializing in antibody engineering, especially those developing antibodies as drugs. abYsis is available at www.abysis.org.


Subject(s)
Antibodies/chemistry , Databases, Protein , Amino Acid Sequence , Animals , Complementarity Determining Regions , Computational Biology , Humans , Internet , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL