Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem Lett ; 30(17): 127403, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738972

ABSTRACT

High-throughput screening methods have been used to identify two novel series of inhibitors that disrupt progranulin binding to sortilin. Exploration of structure-activity relationships (SAR) resulted in compounds with sufficient potency and physicochemical properties to enable co-crystallization with sortilin. These co-crystal structures supported observed SAR trends and provided guidance for additional avenues for designing compounds with additional interactions within the binding site.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Progranulins/metabolism , Small Molecule Libraries/chemistry , Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Amides/chemistry , Amides/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Binding Sites , Crystallography, X-Ray , High-Throughput Screening Assays , Humans , Molecular Dynamics Simulation , Progranulins/antagonists & inhibitors , Protein Binding , Pyrazoles/chemistry , Pyrazoles/metabolism , Small Molecule Libraries/metabolism , Structure-Activity Relationship
2.
Proc Natl Acad Sci U S A ; 114(3): E297-E306, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28039433

ABSTRACT

Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Kinetics , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Receptor, trkA/genetics , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/chemistry , Receptor, trkB/genetics , Receptor, trkC/antagonists & inhibitors , Receptor, trkC/chemistry , Receptor, trkC/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Structure-Activity Relationship , Surface Plasmon Resonance
3.
Bioorg Med Chem Lett ; 27(12): 2695-2701, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28465100

ABSTRACT

A series of substituted indoles were examined as selective inhibitors of tropomyosin-related kinase receptor A (TrkA), a therapeutic target for the treatment of pain. An SAR optimization campaign based on ALIS screening lead compound 1 is reported.


Subject(s)
Drug Design , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, trkA/metabolism , Structure-Activity Relationship
4.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38365209

ABSTRACT

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Subject(s)
COVID-19 , Glutamine , Humans , Glutamine/chemistry , SARS-CoV-2 , Cysteine Endopeptidases/chemistry , Inventions , Protease Inhibitors/pharmacology , Amides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
5.
ACS Med Chem Lett ; 14(7): 986-992, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37465306

ABSTRACT

Modification of potent, selective metabotropic glutamate receptor 2 negative allosteric modulator (mGluR2 NAM) led to a series of analogues with excellent binding affinity, lipophilicity, and suitable physicochemical properties for a PET tracer with convenient chemical handles for incorporation of a 11C or 18F radiolabel. [11C]MK-8056 was synthesized and evaluated in vivo and demonstrated appropriate affinity, selectivity, and physicochemical properties to be used as a positron emission tomography tracer for mGluR2.

6.
ACS Med Chem Lett ; 14(8): 1088-1094, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37583812

ABSTRACT

Glutamate plays a key role in cognition and mood, and it has been shown that inhibiting ionotropic glutamate receptors disrupts cognition, while enhancing ionotropic receptor activity is pro-cognitive. One approach to elevating glutamatergic tone has been to antagonize presynaptic metabotropic glutamate receptor 2 (mGluR2). A desire for selectivity over the largely homologous mGluR3 motivated a strategy to achieve selectivity through the identification of mGluR2 negative allosteric modulators (NAMs). Extensive screening and optimization efforts led to the identification of a novel series of 4-arylquinoline-2-carboxamides. This series was optimized for mGluR2 NAM potency, clean off-target activity, and desirable physical properties, which resulted in the identification of improved C4 and C7 substituents. The initial lead compound from this series was Ames-positive in a single strain with metabolic activation, indicating that a reactive metabolite was likely responsible for the genetic toxicity. Metabolic profiling and Ames assessment across multiple analogs identified key structure-activity relationships associated with Ames positivity. Further optimization led to the Ames-negative mGluR2 negative allosteric modulator MK-8768.

SELECTION OF CITATIONS
SEARCH DETAIL