Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Publication year range
1.
J Med Genet ; 60(10): 999-1005, 2023 10.
Article in English | MEDLINE | ID: mdl-37185208

ABSTRACT

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Subject(s)
Intellectual Disability , Microcephaly , Periventricular Nodular Heterotopia , Humans , Brain/diagnostic imaging , Genotype , Intellectual Disability/genetics , Phenotype , Seizures/genetics
2.
Gastroenterology ; 161(1): 287-300.e16, 2021 07.
Article in English | MEDLINE | ID: mdl-33771553

ABSTRACT

BACKGROUND & AIMS: The etiology of cholestasis remains unknown in many children. We surveyed the genome of children with chronic cholestasis for variants in genes not previously associated with liver disease and validated their biological relevance in zebrafish and murine models. METHOD: Whole-exome (n = 4) and candidate gene sequencing (n = 89) was completed on 93 children with cholestasis and normal serum γ-glutamyl transferase (GGT) levels without pathogenic variants in genes known to cause low GGT cholestasis such as ABCB11 or ATP8B1. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing was used to induce frameshift pathogenic variants in the candidate gene in zebrafish and mice. RESULTS: In a 1-year-old female patient with normal GGT cholestasis and bile duct paucity, we identified a homozygous truncating pathogenic variant (c.198delA, p.Gly67Alafs∗6) in the ABCC12 gene (NM_033226). Five additional rare ABCC12 variants, including a pathogenic one, were detected in our cohort. ABCC12 encodes multidrug resistance-associated protein 9 (MRP9) that belongs to the adenosine 5'-triphosphate-binding cassette transporter C family with unknown function and no previous implication in liver disease. Immunohistochemistry and Western blotting revealed conserved MRP9 protein expression in the bile ducts in human, mouse, and zebrafish. Zebrafish abcc12-null mutants were prone to cholangiocyte apoptosis, which caused progressive bile duct loss during the juvenile stage. MRP9-deficient mice had fewer well-formed interlobular bile ducts and higher serum alkaline phosphatase levels compared with wild-type mice. They exhibited aggravated cholangiocyte apoptosis, hyperbilirubinemia, and liver fibrosis upon cholic acid challenge. CONCLUSIONS: Our work connects MRP9 with bile duct homeostasis and cholestatic liver disease for the first time. It identifies a potential therapeutic target to attenuate bile acid-induced cholangiocyte injury.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Bile Ducts, Intrahepatic/pathology , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/pathology , Mutation , Zebrafish Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Apoptosis , Bile Ducts, Intrahepatic/metabolism , Case-Control Studies , Cholestasis, Intrahepatic/metabolism , Chronic Disease , Female , Gene Editing , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Mice , Mice, Inbred C57BL , Phenotype , Exome Sequencing , Zebrafish , Zebrafish Proteins/metabolism
3.
Am J Med Genet A ; 188(11): 3262-3277, 2022 11.
Article in English | MEDLINE | ID: mdl-36209351

ABSTRACT

Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase that regulates numerous biological processes. PPP2R1A encodes the scaffolding "Aα" subunit of PP2A. To date, nearly 40 patients have been previously reported with 19 different pathogenic PPP2R1A variants, with phenotypes including intellectual disability, developmental delay, epilepsy, infant agenesis/dysgenesis of the corpus callosum, and dysmorphic features. Apart from a single case, severe congenital heart defects (CHD) have not been described. We report four new unrelated individuals with pathogenic heterozygous PPP2R1A variants and CHD and model the crystal structure of several variants to investigate mechanisms of phenotype disparity. Individuals 1 and 2 have a previously described variant (c.548G>A, p.R183Q) and similar phenotypes with severe ventriculomegaly, agenesis/dysgenesis of the corpus callosum, and severe CHD. Individual 3 also has a recurrent variant (c.544C>T, p.R182W) and presented with agenesis of corpus callosum, ventriculomegaly, mild pulmonic stenosis, and small patent foramen ovale. Individual 4 has a novel variant (c.536C>A, p.P179H), ventriculomegaly, and atrial septal defect. To conclude, we propose expansion of the phenotype of PPP2R1A neurodevelopmental disorder to include CHD. Further, the R183Q variant has now been described in three individuals, all with severe neurologic abnormalities, severe CHD, and early death suggesting that this variant may be particularly deleterious.


Subject(s)
Heart Defects, Congenital , Hydrocephalus , Nervous System Malformations , Neurodevelopmental Disorders , Heart Defects, Congenital/complications , Heart Defects, Congenital/genetics , Humans , Neurodevelopmental Disorders/genetics , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Serine , Transcription Factors
4.
BMC Bioinformatics ; 22(1): 104, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33653260

ABSTRACT

BACKGROUND: VCF formatted files are the lingua franca of next-generation sequencing, whereas HL7 FHIR is emerging as a standard language for electronic health record interoperability. A growing number of FHIR-based clinical genomics applications are emerging. Here, we describe an open source utility for converting variants from VCF format into HL7 FHIR format. RESULTS: vcf2fhir converts VCF variants into a FHIR Genomics Diagnostic Report. Conversion translates each VCF row into a corresponding FHIR-formatted variant in the generated report. In scope are simple variants (SNVs, MNVs, Indels), along with zygosity and phase relationships, for autosomes, sex chromosomes, and mitochondrial DNA. Input parameters include VCF file and genome build ('GRCh37' or 'GRCh38'); and optionally a conversion region that indicates the region(s) to convert, a studied region that lists genomic regions studied by the lab, and a non-callable region that lists studied regions deemed uncallable by the lab. Conversion can be limited to a subset of VCF by supplying genomic coordinates of the conversion region(s). If studied and non-callable regions are also supplied, the output FHIR report will include 'region-studied' observations that detail which portions of the conversion region were studied, and of those studied regions, which portions were deemed uncallable. We illustrate the vcf2fhir utility via two case studies. The first, 'SMART Cancer Navigator', is a web application that offers clinical decision support by linking patient EHR information to cancerous gene variants. The second, 'Precision Genomics Integration Platform', intersects a patient's FHIR-formatted clinical and genomic data with knowledge bases in order to provide on-demand delivery of contextually relevant genomic findings and recommendations to the EHR. CONCLUSIONS: Experience to date shows that the vcf2fhir utility can be effectively woven into clinically useful genomic-EHR integration pipelines. Additional testing will be a critical step towards the clinical validation of this utility, enabling it to be integrated in a variety of real world data flow scenarios. For now, we propose the use of this utility primarily to accelerate FHIR Genomics understanding and to facilitate experimentation with further integration of genomics data into the EHR.


Subject(s)
Decision Support Systems, Clinical , Genomics , Electronic Health Records , Humans , Knowledge Bases , Oncogenes
7.
Pediatr Dermatol ; 35(2): 188-197, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29334134

ABSTRACT

BACKGROUND: Historically, diagnosis of epidermolysis bullosa has required skin biopsies for electron microscopy, direct immunofluorescence to determine which gene(s) to choose for genetic testing, or both. METHODS: To avoid these invasive tests, we developed a high-throughput next-generation sequencing (NGS)-based diagnostic assay called EBSEQ that allows simultaneous detection of mutations in 21 genes with known roles in epidermolysis bullosa pathogenicity. Mutations are confirmed with traditional Sanger sequencing. RESULTS: We present our EBSEQ assay and preliminary studies on the first 43 subjects tested. We identified 11 cases of epidermolysis bullosa simplex, five cases of junctional epidermolysis bullosa, 11 cases of dominant dystrophic epidermolysis bullosa, 15 cases of recessive dystrophic epidermolysis bullosa, and one case that remains without diagnosis. We also found an additional 52 variants of uncertain clinical significance in 17 of the 21 epidermolysis bullosa-associated genes tested. Three of the variants of uncertain clinical significance were also found in three other patients, for a total of 49 unique variants of uncertain clinical significance. We found the clinical sensitivity of the assay to be 75% to 98% and the analytical sensitivity to be 99% in identifying base substitutions and small deletions and duplications. Turnaround time was 3 to 6 weeks. CONCLUSIONS: EBSEQ is a sensitive, relatively rapid, minimally invasive, comprehensive genetic assay for the diagnosis of epidermolysis bullosa.


Subject(s)
Epidermolysis Bullosa/genetics , High-Throughput Nucleotide Sequencing/methods , Adolescent , Adult , Aged , Child , Child, Preschool , Epidermolysis Bullosa/diagnosis , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Ohio , Skin/pathology , Young Adult
8.
J Infect Dis ; 213(7): 1180-8, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26597256

ABSTRACT

BACKGROUND: Severe H1N1 influenza can be lethal in otherwise healthy individuals and can have features of reactive hemophagocytic lymphohistiocytosis (HLH). HLH is associated with mutations in lymphocyte cytolytic pathway genes, which have not been previously explored in H1N1 influenza. METHODS: Sixteen cases of fatal influenza A(H1N1) infection, 81% with histopathologic hemophagocytosis, were identified and analyzed for clinical and laboratory features of HLH, using modified HLH-2004 and macrophage activation syndrome (MAS) criteria. Fourteen specimens were subject to whole-exome sequencing. Sequence alignment and variant filtering detected HLH gene mutations and potential disease-causing variants. Cytolytic function of the PRF1 p.A91V mutation was tested in lentiviral-transduced NK-92 natural killer (NK) cells. RESULTS: Despite several lacking variables, cases of influenza A(H1N1) infection met 44% and 81% of modified HLH-2004 and MAS criteria, respectively. Five subjects (36%) carried one of 3 heterozygous LYST mutations, 2 of whom also possessed the p.A91V PRF1 mutation, which was shown to decrease NK cell cytolytic function. Several patients also carried rare variants in other genes previously observed in MAS. CONCLUSIONS: This cohort of fatal influenza A(H1N1) infections confirms the presence of hemophagocytosis and HLH pathology. Moreover, the high percentage of HLH gene mutations suggests they are risk factors for mortality among individuals with influenza A(H1N1) infection.


Subject(s)
Exome , Genetic Predisposition to Disease , Influenza A Virus, H1N1 Subtype , Influenza, Human/genetics , Lymphohistiocytosis, Hemophagocytic/genetics , Macrophage Activation Syndrome/genetics , Cohort Studies , Female , Genotype , HEK293 Cells , Humans , Influenza, Human/mortality , Killer Cells, Natural/physiology , Male , Mutation , Perforin/genetics , Perforin/metabolism , Sequence Analysis, DNA
9.
Blood ; 124(8): 1331-4, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24916509

ABSTRACT

Several molecules (LYST, AP3, RAB27A, STX11, STXBP2, MUNC13-4, and PRF1) have been associated with the function of cytotoxic lymphocytes. Biallelic defects in all of these molecules have been associated with familial hemophagocytic lymphohistiocytosis (FHL). We retrospectively reviewed the genetic and immunology test results from 2701 patients with a clinically suspected diagnosis of hemophagocytic lymphohistiocytosis and found 28 patients with single heterozygous mutations in 2 FHL-associated genes. Of these patients, 21 had mutations within PRF1 and a degranulation gene, and 7 were found to have mutations within 2 genes involved in the degranulation pathway. In patients with combination defects involving 2 genes in the degranulation pathway, CD107a degranulation was decreased, comparable to patients with biallelic mutations in one of the genes in the degranulation pathway. This suggests a potential digenic mode of inheritance of FHL as a result of a synergistic function effect within genes involved in cytotoxic lymphocyte degranulation.


Subject(s)
Cell Degranulation , Epistasis, Genetic , Lymphocytes/immunology , Lymphohistiocytosis, Hemophagocytic , Lysosomal-Associated Membrane Protein 1 , Models, Genetic , Mutation , Pore Forming Cytotoxic Proteins , Adolescent , Adult , Cell Degranulation/genetics , Cell Degranulation/immunology , Child , Child, Preschool , Epistasis, Genetic/genetics , Epistasis, Genetic/immunology , Female , Humans , Infant , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Lysosomal-Associated Membrane Protein 1/genetics , Lysosomal-Associated Membrane Protein 1/immunology , Male , Perforin , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Retrospective Studies
10.
Am J Med Genet A ; 170(3): 670-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26842493

ABSTRACT

We report on 19 individuals with a recurrent de novo c.607C>T mutation in PACS1. This specific mutation gives rise to a recognizable intellectual disability syndrome. There is a distinctive facial appearance (19/19), characterized by full and arched eyebrows, hypertelorism with downslanting palpebral fissures, long eye lashes, ptosis, low set and simple ears, bulbous nasal tip, wide mouth with downturned corners and a thin upper lip with an unusual "wavy" profile, flat philtrum, and diastema of the teeth. Intellectual disability, ranging from mild to moderate, was present in all. Hypotonia is common in infancy (8/19). Seizures are frequent (12/19) and respond well to anticonvulsive medication. Structural malformations are common, including heart (10/19), brain (12/16), eye (10/19), kidney (3/19), and cryptorchidism (6/12 males). Feeding dysfunction is presenting in infancy with failure to thrive (5/19), gastroesophageal reflux (6/19), and gastrostomy tube placement (4/19). There is persistence of oral motor dysfunction. We provide suggestions for clinical work-up and management and hope that the present study will facilitate clinical recognition of further cases.


Subject(s)
Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Point Mutation , Seizures/genetics , Vesicular Transport Proteins/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/pathology , Adolescent , Anticonvulsants/therapeutic use , Child , Child, Preschool , Facies , Failure to Thrive/diagnosis , Failure to Thrive/drug therapy , Failure to Thrive/genetics , Failure to Thrive/pathology , Female , Gene Expression , Humans , Intellectual Disability/diagnosis , Intellectual Disability/drug therapy , Intellectual Disability/pathology , Male , Muscle Hypotonia/diagnosis , Muscle Hypotonia/drug therapy , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Seizures/diagnosis , Seizures/drug therapy , Seizures/pathology , Severity of Illness Index , Syndrome , Young Adult
11.
Pediatr Blood Cancer ; 61(6): 1034-40, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24470399

ABSTRACT

BACKGROUND: The mutations in UNC13D are responsible for familial hemophagocytic lymphohistiocytosis (FHL) type 3. A 253-kb inversion and two deep intronic mutations, c.118-308C > T and c.118-307G > A, in UNC13D were recently reported in European and Asian FHL3 patients. We sought to determine the prevalence of these three non-coding mutations in North American FHL patients and evaluate the significance of examining these new mutations in genetic testing. PROCEDURE: We performed DNA sequencing of UNC13D and targeted analysis of these three mutations in 1,709 North American patients with a suspected clinical diagnosis of hemophagocytic lymphohistiocytosis (HLH). RESULTS: The 253-kb inversion, intronic mutations c.118-308C > T and c.118-307G > A were found in 11, 15, and 4 patients, respectively, in which the genetic basis (bi-allelic mutations) explained 25 additional patients. Taken together with previously diagnosed FHL3 patients in our HLH patient registry, these three non-coding mutations were found in 31.6% (25/79) of the FHL3 patients. The 253-kb inversion, c.118-308C > T and c.118-307G > A accounted for 7.0%, 8.9%, and 1.3% of mutant alleles, respectively. Significantly, eight novel mutations in UNC13D are being reported in this study. To further evaluate the expression level of the newly reported intronic mutation c.118-307G > A, reverse transcription PCR and Western blot analysis revealed a significant reduction of both RNA and protein levels suggesting that the c.118-307G > A mutation affects transcription. CONCLUSIONS: These specified non-coding mutations were found in a significant number of North American patients and inclusion of them in mutation analysis will improve the molecular diagnosis of FHL3.


Subject(s)
Lymphohistiocytosis, Hemophagocytic/genetics , Membrane Proteins/genetics , Adolescent , Adult , Black or African American/genetics , Arabs/genetics , Asian/genetics , Child , Chromosome Inversion , Consanguinity , DNA Mutational Analysis , Female , Genetic Testing , Hispanic or Latino/genetics , Humans , Infant , Infant, Newborn , Introns/genetics , Lymphohistiocytosis, Hemophagocytic/ethnology , Male , Membrane Proteins/chemistry , Membrane Proteins/physiology , North America/epidemiology , Point Mutation , Sequence Analysis, DNA , White People/genetics , Young Adult
13.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645005

ABSTRACT

Cleft lip and cleft palate are among the most common congenital anomalies and are the result of incomplete fusion of embryonic craniofacial processes or palatal shelves, respectively. We know that genetics play a large role in these anomalies but the list of known causal genes is far from complete. As part of a larger sequencing effort of patients with micrognathia and cleft palate we identified a candidate variant in transforming growth factor beta receptor 2 (TGFBR2) which is rare, changing a highly conserved amino acid, and predicted to be pathogenic by a number of metrics. The family history and population genetics would suggest this specific variant would be incompletely penetrant, but this gene has been convincingly implicated in craniofacial development. In order to test the hypothesis this might be a causal variant, we used genome editing to create the orthologous variant in a new mouse model. Surprisingly, Tgfbr2V387M mice did not exhibit craniofacial anomalies or have reduced survival suggesting this is, in fact, not a causal variant for cleft palate/ micrognathia. The discrepancy between in silico predictions and mouse phenotypes highlights the complexity of translating human genetic findings to mouse models. We expect these findings will aid in interpretation of future variants seen in TGFBR2 from ongoing sequencing of patients with congenital craniofacial anomalies.

14.
Learn Health Syst ; 7(4): e10385, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860057

ABSTRACT

Introduction: Variant annotation is a critical component in next-generation sequencing, enabling a sequencing lab to comb through a sea of variants in order to hone in on those likely to be most significant, and providing clinicians with necessary context for decision-making. But with the rapid evolution of genomics knowledge, reported annotations can quickly become out-of-date. Under the ONC Sync for Genes program, our team sought to standardize the sharing of dynamically annotated variants (e.g., variants annotated on demand, based on current knowledge). The computable biomedical knowledge artifacts that were developed enable a clinical decision support (CDS) application to surface up-to-date annotations to clinicians. Methods: The work reported in this article relies on the Health Level 7 Fast Healthcare Interoperability Resources (FHIR) Genomics and Global Alliance for Genomics and Health (GA4GH) Variant Annotation (VA) standards. We developed a CDS pipeline that dynamically annotates patient's variants through an intersection with current knowledge and serves up the FHIR-encoded variants and annotations (diagnostic and therapeutic implications, molecular consequences, population allele frequencies) via FHIR Genomics Operations. ClinVar, CIViC, and PharmGKB were used as knowledge sources, encoded as per the GA4GH VA specification. Results: Primary public artifacts from this project include a GitHub repository with all source code, a Swagger interface that allows anyone to visualize and interact with the code using only a web browser, and a backend database where all (synthetic and anonymized) patient data and knowledge are housed. Conclusions: We found that variant annotation varies in complexity based on the variant type, and that various bioinformatics strategies can greatly improve automated annotation fidelity. More importantly, we demonstrated the feasibility of an ecosystem where genomic knowledge bases have standardized knowledge (e.g., based on the GA4GH VA spec), and CDS applications can dynamically leverage that knowledge to provide real-time decision support, based on current knowledge, to clinicians at the point of care.

15.
J Am Med Inform Assoc ; 30(3): 485-493, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36548217

ABSTRACT

OBJECTIVE: Enabling clinicians to formulate individualized clinical management strategies from the sea of molecular data remains a fundamentally important but daunting task. Here, we describe efforts towards a new paradigm in genomics-electronic health record (HER) integration, using a standardized suite of FHIR Genomics Operations that encapsulates the complexity of molecular data so that precision medicine solution developers can focus on building applications. MATERIALS AND METHODS: FHIR Genomics Operations essentially "wrap" a genomics data repository, presenting a uniform interface to applications. More importantly, operations encapsulate the complexity of data within a repository and normalize redundant data representations-particularly relevant in genomics, where a tremendous amount of raw data exists in often-complex non-FHIR formats. RESULTS: Fifteen FHIR Genomics Operations have been developed, designed to support a wide range of clinical scenarios, such as variant discovery; clinical trial matching; hereditary condition and pharmacogenomic screening; and variant reanalysis. Operations are being matured through the HL7 balloting process, connectathons, pilots, and the HL7 FHIR Accelerator program. DISCUSSION: Next-generation sequencing can identify thousands to millions of variants, whose clinical significance can change over time as our knowledge evolves. To manage such a large volume of dynamic and complex data, new models of genomics-EHR integration are needed. Qualitative observations to date suggest that freeing application developers from the need to understand the nuances of genomic data, and instead base applications on standardized APIs can not only accelerate integration but also dramatically expand the applications of Omic data in driving precision care at scale for all.


Subject(s)
Electronic Health Records , Genomics , Time , Health Level Seven
16.
J Pediatric Infect Dis Soc ; 12(3): 169-172, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36537278

ABSTRACT

We performed an observational cohort study to assess associations between genetic factors of dengue fever (DF) severity in children in the Dominican Republic. A total of 488 participants had serologically confirmed DF. We replicated the association between the IFIH1 gene (rs1990760) and severe DF (n = 80/488, p = 0.006) and identified novel associations needing further investigation.


Subject(s)
Dengue , Severe Dengue , Humans , Child , Dengue/diagnosis , Dengue/epidemiology , Dominican Republic/epidemiology , Cohort Studies , Genomics
17.
BMC Biotechnol ; 10: 10, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20146813

ABSTRACT

BACKGROUND: Despite current knowledge of mutations in 45 genes that can cause nonsyndromic sensorineural hearing loss (SNHL), no unified clinical test has been developed that can comprehensively detect mutations in multiple genes. We therefore designed Affymetrix resequencing microarrays capable of resequencing 13 genes mutated in SNHL (GJB2, GJB6, CDH23, KCNE1, KCNQ1, MYO7A, OTOF, PDS, MYO6, SLC26A5, TMIE, TMPRSS3, USH1C). We present results from hearing loss arrays developed in two different research facilities and highlight some of the approaches we adopted to enhance the applicability of resequencing arrays in a clinical setting. RESULTS: We leveraged sequence and intensity pattern features responsible for diminished coverage and accuracy and developed a novel algorithm, sPROFILER, which resolved >80% of no-calls from GSEQ and allowed 99.6% (range: 99.2-99.8%) of sequence to be called, while maintaining overall accuracy at >99.8% based upon dideoxy sequencing comparison. CONCLUSIONS: Together, these findings provide insight into critical issues for disease-centered resequencing protocols suitable for clinical application and support the use of array-based resequencing technology as a valuable molecular diagnostic tool for pediatric SNHL and other genetic diseases with substantial genetic heterogeneity.


Subject(s)
DNA Mutational Analysis/methods , Hearing Loss, Sensorineural/genetics , Oligonucleotide Array Sequence Analysis/methods , Algorithms , Base Composition , Connexin 26 , Connexins , Humans , Mutation , Sensitivity and Specificity
19.
Arthritis Rheumatol ; 71(11): 1943-1954, 2019 11.
Article in English | MEDLINE | ID: mdl-31379071

ABSTRACT

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is associated with a recently recognized, albeit poorly defined and characterized, lung disease (LD). The objective of this study was to describe the clinical characteristics, risk factors, and histopathologic and immunologic features of this novel inflammatory LD associated with systemic JIA (designated SJIA-LD). METHODS: Clinical data collected since 2010 were abstracted from the medical records of patients with systemic JIA from the Cincinnati Children's Hospital Medical Center. Epidemiologic, cellular, biochemical, genomic, and transcriptional profiling analyses were performed. RESULTS: Eighteen patients with SJIA-LD were identified. Radiographic findings included diffuse ground-glass opacities, subpleural reticulation, interlobular septal thickening, and lymphadenopathy. Pathologic findings included patchy, but extensive, lymphoplasmacytic infiltrates and mixed features of pulmonary alveolar proteinosis (PAP) and endogenous lipoid pneumonia. Compared to systemic JIA patients without LD, those with SJIA-LD were younger at the diagnosis of systemic JIA (odds ratio [OR] 6.5, P = 0.007), more often had prior episodes of macrophage activation syndrome (MAS) (OR 14.5, P < 0.001), had a greater frequency of adverse reactions to biologic therapy (OR 13.6, P < 0.001), and had higher serum levels of interleukin-18 (IL-18) (median 27,612 pg/ml versus 5,413 pg/ml; P = 0.047). Patients with SJIA-LD lacked genetic, serologic, or functional evidence of granulocyte-macrophage colony-stimulating factor pathway dysfunction, a feature that is typical of familial or autoimmune PAP. Moreover, bronchoalveolar lavage (BAL) fluid from patients with SJIA-LD rarely demonstrated proteinaceous material and had less lipid-laden macrophages than that seen in patients with primary PAP (mean 10.5% in patients with SJIA-LD versus 66.1% in patients with primary PAP; P < 0.001). BAL fluid from patients with SJIA-LD contained elevated levels of IL-18 and the interferon-γ-induced chemokines CXCL9 and CXCL10. Transcriptional profiling of the lung tissue from patients with SJIA-LD identified up-regulated type II interferon and T cell activation networks. This signature was also present in SJIA-LD human lung tissue sections that lacked substantial histopathologic findings, suggesting that this activation signature may precede and drive the lung pathology in SJIA-LD. CONCLUSION: Pulmonary disease is increasingly detected in children with systemic JIA, particularly in association with MAS. This entity has distinct clinical and immunologic features and represents an uncharacterized inflammatory LD.


Subject(s)
Arthritis, Juvenile/epidemiology , Pulmonary Alveolar Proteinosis/epidemiology , Age Distribution , Arthritis, Juvenile/diagnostic imaging , Arthritis, Juvenile/immunology , Arthritis, Juvenile/pathology , Bronchoalveolar Lavage Fluid , Chemokine CXCL10/metabolism , Chemokine CXCL9/metabolism , Child , Child, Preschool , Female , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Infant , Interferon-gamma/metabolism , Interleukin-18/immunology , Lung/diagnostic imaging , Lung/pathology , Lung Diseases/diagnostic imaging , Lung Diseases/epidemiology , Lung Diseases/immunology , Lung Diseases/pathology , Macrophage Activation Syndrome/epidemiology , Macrophage Activation Syndrome/immunology , Male , Pulmonary Alveolar Proteinosis/diagnostic imaging , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/pathology , T-Lymphocytes/metabolism , Tomography, X-Ray Computed , Transcriptome , Up-Regulation
20.
Arthritis Rheumatol ; 70(6): 963-970, 2018 06.
Article in English | MEDLINE | ID: mdl-29409136

ABSTRACT

OBJECTIVE: Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile idiopathic arthritis (JIA) and has pathologic similarity to hemophagocytic lymphohistiocytosis (HLH). Intronic variants in UNC13D are found in patients with familial HLH type 3 (FHLH3), but the role of noncoding variants in MAS is unknown. The objective of this study was to identify deep intronic UNC13D variants in patients with MAS. METHODS: A custom enrichment library was constructed to sequence a genomic region of ~1 Mb flanking UNC13D in 24 patients with systemic JIA, recurrent MAS, and negative results of prior genetic (exon/coding) testing. The functional consequences of intronic variants were assessed using quantitative polymerase chain reaction in patient-derived peripheral blood mononuclear cells (PBMCs), electromobility shift assay, in vitro transcriptional enhancer assays, and natural killer (NK) cell degranulation assays. RESULTS: We evaluated a patient with systemic JIA and recurrent MAS in whom a novel functional intronic variant in UNC13D, c.117+143A>G, was observed. This variant occurred in a proposed regulatory region that drives lymphocyte-specific UNC13D expression and is associated with reduced transcript levels in patient PBMCs. This variant also disrupted NF-κB binding to a functional transcriptional enhancer, leading to reduced enhancer activity in vitro. Partial knockdown of UNC13D expression also led to impaired NK cell degranulation. An additional patient was identified with a previously described UNC13D intronic variant, for a total noncoding variant hit rate of 8.3% (2 of 24). CONCLUSION: These findings highlight the notion that intronic variants in key regulatory regions may be associated with MAS in patients with systemic JIA and support deep sequencing approaches when causative coding variants are not identified.


Subject(s)
Arthritis, Juvenile/genetics , Introns/genetics , Macrophage Activation Syndrome/genetics , Membrane Proteins/genetics , NF-kappa B/genetics , Enhancer Elements, Genetic/genetics , Genetic Variation , Humans , Infant , Male , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL