Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(7): 1098-1108, 2022 07.
Article in English | MEDLINE | ID: mdl-35761088

ABSTRACT

Patients with loss of function in the gene encoding the master regulator of central tolerance AIRE suffer from a devastating disorder called autoimmune polyendocrine syndrome type 1 (APS-1), characterized by a spectrum of autoimmune diseases and severe mucocutaneous candidiasis. Although the key mechanisms underlying the development of autoimmunity in patients with APS-1 are well established, the underlying cause of the increased susceptibility to Candida albicans infection remains less understood. Here, we show that Aire+MHCII+ type 3 innate lymphoid cells (ILC3s) could sense, internalize and present C. albicans and had a critical role in the induction of Candida-specific T helper 17 (TH17) cell clones. Extrathymic Rorc-Cre-mediated deletion of Aire resulted in impaired generation of Candida-specific TH17 cells and subsequent overgrowth of C. albicans in the mucosal tissues. Collectively, our observations identify a previously unrecognized regulatory mechanism for effective defense responses against fungal infections.


Subject(s)
Autoimmune Diseases , Candidiasis , Polyendocrinopathies, Autoimmune , Candida albicans , Candidiasis/genetics , Humans , Immunity, Innate , Polyendocrinopathies, Autoimmune/genetics , Th17 Cells
2.
Nature ; 624(7992): 653-662, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993717

ABSTRACT

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.


Subject(s)
Amelogenesis Imperfecta , Autoantibodies , Celiac Disease , Polyendocrinopathies, Autoimmune , Humans , Amelogenesis Imperfecta/complications , Amelogenesis Imperfecta/immunology , Autoantibodies/immunology , Celiac Disease/complications , Celiac Disease/immunology , Immunoglobulin A/immunology , Polyendocrinopathies, Autoimmune/complications , Polyendocrinopathies, Autoimmune/immunology , Proteins/immunology , Proteins/metabolism , Ameloblasts/metabolism , Dental Enamel/immunology , Dental Enamel/metabolism , AIRE Protein/deficiency , Antigens/immunology , Antigens/metabolism , Intestines/immunology , Intestines/metabolism
3.
Nat Immunol ; 16(7): 737-45, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006015

ABSTRACT

Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire(+) mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.


Subject(s)
Central Tolerance/immunology , Sirtuin 1/immunology , Transcription Factors/immunology , Transcriptional Activation/immunology , Acetylation , Animals , Antigens/immunology , Central Tolerance/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Flow Cytometry , HEK293 Cells , Humans , Immunoblotting , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Organ Specificity/immunology , Protein Binding/immunology , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/immunology , AIRE Protein
4.
Clin Exp Immunol ; 215(1): 47-57, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37578839

ABSTRACT

Primary adrenal insufficiency (PAI) is most often caused by an autoimmune destruction of the adrenal cortex resulting in failure to produce cortisol and aldosterone. The aetiology is thought to be a combination of genetic and environmental risk factors, leading to breakdown of immunological tolerance. Regulatory T cells (Tregs) are deficient in many autoimmune disorders, but it is not known whether they contribute to development of PAI. We aimed to investigate the frequency and function of naive and expanded Tregs in patients with PAI and polyendocrine syndromes compared to age- and gender-matched healthy controls. Flow cytometry was used to assess the frequency and characterize functional markers of blood Tregs in PAI (N = 15). Expanded Treg suppressive abilities were assessed with a flow cytometry based suppression assay (N = 20), while bulk RNA-sequencing was used to examine transcriptomic differences (N = 16) and oxygen consumption rate was measured by a Seahorse cell metabolic assay (N = 11). Our results showed that Treg frequency and suppressive capacity were similar between patients and controls. An increased expression of killer-cell leptin-like receptors and mitochondrial genes was revealed in PAI patients, but their expanded Tregs did not display signs of mitochondrial dysfunction. Our findings do not support a clear role for Tregs in the contribution of PAI development.


Subject(s)
Addison Disease , T-Lymphocytes, Regulatory , Humans , Addison Disease/genetics , Immune Tolerance , Hydrocortisone/metabolism , Flow Cytometry , Forkhead Transcription Factors/metabolism
5.
Immunity ; 42(6): 1185-96, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26084028

ABSTRACT

The autoimmune regulator (AIRE) gene is crucial for establishing central immunological tolerance and preventing autoimmunity. Mutations in AIRE cause a rare autosomal-recessive disease, autoimmune polyendocrine syndrome type 1 (APS-1), distinguished by multi-organ autoimmunity. We have identified multiple cases and families with mono-allelic mutations in the first plant homeodomain (PHD1) zinc finger of AIRE that followed dominant inheritance, typically characterized by later onset, milder phenotypes, and reduced penetrance compared to classical APS-1. These missense PHD1 mutations suppressed gene expression driven by wild-type AIRE in a dominant-negative manner, unlike CARD or truncated AIRE mutants that lacked such dominant capacity. Exome array analysis revealed that the PHD1 dominant mutants were found with relatively high frequency (>0.0008) in mixed populations. Our results provide insight into the molecular action of AIRE and demonstrate that disease-causing mutations in the AIRE locus are more common than previously appreciated and cause more variable autoimmune phenotypes.


Subject(s)
DNA Mutational Analysis/methods , Genes, Dominant/genetics , Mutation/genetics , Polyendocrinopathies, Autoimmune/genetics , Transcription Factors/genetics , Adolescent , Adult , Amino Acid Sequence , Autoimmunity/genetics , Child , Child, Preschool , Female , Gene Frequency , Humans , Male , Microsatellite Repeats/genetics , Molecular Sequence Data , Norway , Organ Specificity/genetics , Pedigree , Penetrance , Phenotype , Russia , Young Adult , AIRE Protein
6.
J Intern Med ; 294(1): 96-109, 2023 07.
Article in English | MEDLINE | ID: mdl-37151110

ABSTRACT

BACKGROUND: Autoimmune Addison's disease (AAD) is the most common cause of primary adrenal insufficiency (PAI). Despite its exceptionally high heritability, tools to estimate disease susceptibility in individual patients are lacking. We hypothesized that polygenic risk score (PRS) for AAD could help investigate PAI pathogenesis in pediatric patients. METHODS: We here constructed and evaluated a PRS for AAD in 1223 seropositive cases and 4097 controls. To test its clinical utility, we reevaluated 18 pediatric patients, whose whole genome we also sequenced. We next explored the individual PRS in more than 120 seronegative patients with idiopathic PAI. RESULTS: The genetic susceptibility to AAD-quantified using PRS-was on average 1.5 standard deviations (SD) higher in patients compared with healthy controls (p < 2e - 16), and 1.2 SD higher in the young patients compared with the old (p = 3e - 4). Using the novel PRS, we searched for pediatric patients with strikingly low AAD susceptibility and identified cases of monogenic PAI, previously misdiagnosed as AAD. By stratifying seronegative adult patients by autoimmune comorbidities and disease duration we could delineate subgroups of PRS suggesting various disease etiologies. CONCLUSIONS: The PRS performed well for case-control differentiation and susceptibility estimation in individual patients. Remarkably, a PRS for AAD holds promise as a means to detect disease etiologies other than autoimmunity.


Subject(s)
Addison Disease , Adult , Humans , Child , Autoantibodies , Autoimmunity , Risk Factors , Genetic Predisposition to Disease
7.
Lancet ; 397(10274): 613-629, 2021 02 13.
Article in English | MEDLINE | ID: mdl-33484633

ABSTRACT

Adrenal insufficiency can arise from a primary adrenal disorder, secondary to adrenocorticotropic hormone deficiency, or by suppression of adrenocorticotropic hormone by exogenous glucocorticoid or opioid medications. Hallmark clinical features are unintentional weight loss, anorexia, postural hypotension, profound fatigue, muscle and abdominal pain, and hyponatraemia. Additionally, patients with primary adrenal insufficiency usually develop skin hyperpigmentation and crave salt. Diagnosis of adrenal insufficiency is usually delayed because the initial presentation is often non-specific; physician awareness must be improved to avoid adrenal crisis. Despite state-of-the-art steroid replacement therapy, reduced quality of life and work capacity, and increased mortality is reported in patients with primary or secondary adrenal insufficiency. Active and repeated patient education on managing adrenal insufficiency, including advice on how to increase medication during intercurrent illness, medical or dental procedures, and profound stress, is required to prevent adrenal crisis, which occurs in about 50% of patients with adrenal insufficiency after diagnosis. It is good practice for physicians to provide patients with a steroid card, parenteral hydrocortisone, and training for parenteral hydrocortisone administration, in case of vomiting or severe illness. New modes of glucocorticoid delivery could improve the quality of life in some patients with adrenal insufficiency, and further advances in oral and parenteral therapy will probably emerge in the next few years.


Subject(s)
Adrenal Insufficiency , Adrenal Insufficiency/diagnosis , Adrenal Insufficiency/physiopathology , Adrenal Insufficiency/therapy , Humans
8.
J Autoimmun ; 133: 102917, 2022 12.
Article in English | MEDLINE | ID: mdl-36191466

ABSTRACT

BACKGROUND: Autoantibodies against type I interferons (IFN) alpha (α) and omega (ω), and interleukins (IL) 17 and 22 are a hallmark of autoimmune polyendocrine syndrome type 1 (APS-1), caused by mutations in the autoimmune regulator (AIRE) gene. Such antibodies are also seen in a number of monogenic immunodeficiencies. OBJECTIVES: To determine whether screening for cytokine autoantibodies (anti-IFN-ω and anti-IL22) can be used to identify patients with monogenic immune disorders. METHODS: A novel ELISA assay was employed to measure IL22 autoantibodies in 675 patients with autoimmune primary adrenal insufficiency (PAI) and a radio immune assay (RIA) was used to measure autoantibodies against IFN-ω in 1778 patients with a variety of endocrine diseases, mostly of autoimmune aetiology. Positive cases were sequenced for all coding exons of the AIRE gene. If no AIRE mutations were found, we applied next generation sequencing (NGS) to search for mutations in immune related genes. RESULTS: We identified 29 patients with autoantibodies against IFN-ω and/or IL22. Of these, four new APS-1 cases with disease-causing variants in AIRE were found. In addition, we identified two patients with pathogenic heterozygous variants in CTLA4 and NFKB2, respectively. Nine rare variants in other immune genes were identified in six patients, although further studies are needed to determine their disease-causing potential. CONCLUSION: Screening of cytokine autoantibodies can efficiently identify patients with previously unknown monogenic and possible oligogenic causes of autoimmune and immune deficiency diseases. This information is crucial for providing personalised treatment and follow-up of patients and their relatives.


Subject(s)
Autoantibodies , Endocrine System Diseases , Humans , Cytokines
9.
Immunol Rev ; 271(1): 127-40, 2016 May.
Article in English | MEDLINE | ID: mdl-27088911

ABSTRACT

The establishment of central tolerance in the thymus is critical for avoiding deleterious autoimmune diseases. Autoimmune regulator (AIRE), the causative gene in autoimmune polyendocrine syndrome type-1 (APS-1), is crucial for the establishment of self-tolerance in the thymus by promoting promiscuous expression of a wide array of tissue-restricted self-antigens. This step is critical for elimination of high-affinity self-reactive T cells from the immunological repertoire, and for the induction of a specific subset of Foxp3(+) T-regulatory (Treg ) cells. In this review, we discuss the most recent advances in our understanding of how AIRE operates on molecular and cellular levels, as well as of how its loss of function results in breakdown of self-tolerance mechanisms characterized by a broad and heterogeneous repertoire of autoimmune phenotypes.


Subject(s)
Clonal Selection, Antigen-Mediated , Polyendocrinopathies, Autoimmune/genetics , T-Lymphocytes, Regulatory/physiology , Transcription Factors/genetics , Animals , Autoantigens/immunology , Autoimmunity , Central Tolerance , Forkhead Transcription Factors/metabolism , Humans , Transcription Factors/metabolism , AIRE Protein
10.
Immunity ; 32(4): 479-87, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20412758

ABSTRACT

Autoimmune diseases such as type 1 diabetes are complex in their pathogenesis. One approach to improving our understanding of type 1 diabetes is the study of diseases that represent more extreme examples of autoimmunity. Autoimmune polyendocrine syndromes (APS) are relatively rare diseases that often include type 1 diabetes as part of the disease phenotype. Recently, there has been tremendous progress in unraveling some of the underlying mechanisms of APS. Here, we highlight the APS disorders with the perspective of the clues they can offer to the pathogenesis and treatment of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/immunology , Polyendocrinopathies, Autoimmune/immunology , Animals , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , Humans , Immune Tolerance , Polyendocrinopathies, Autoimmune/genetics , T-Lymphocytes, Regulatory/immunology
11.
J Immunol ; 196(7): 2955-64, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26903483

ABSTRACT

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease caused by mutations in the AIRE gene. Although mainly an endocrine disease, a substantial fraction of patients have gastrointestinal manifestations. In this study, we have examined the role of anticommensal responses and their regulation. APECED patients had increased levels of Abs against Saccharomyces cerevisiae (p < 0.0001) and against several species of commensal gut bacteria, but not against species predominantly associated with other locations. The anticommensal Ab levels did not correlate with gastrointestinal autoantibodies, neutralizing anti-IL-17 or -IL-22 Abs, or gastrointestinal symptoms, although scarcity of the available clinical data suggests that further study is required. However, the anti-S. cerevisiae Ab levels showed a significant inverse correlation with FOXP3 expression levels in regulatory T cells (Treg), previously shown to be dysfunctional in APECED. The correlation was strongest in the activated CD45RO(+) population (ρ = -0.706; p < 0.01). APECED patients also had decreased numbers of FOXP3(+) cells in gut biopsies. These results show that APECED patients develop early and sustained responses to gut microbial Ags in a pattern reminiscent of Crohn's disease. This abnormal immune recognition of gut commensals is linked to a systemic Treg defect, which is also reflected as a local decrease of gut-associated Treg. To our knowledge, these data are the first to show dysregulated responses to non-self commensal Ags in APECED and indicate that AIRE contributes to the regulation of gut homeostasis, at least indirectly. The data also raise the possibility of persistent microbial stimulation as a contributing factor in the pathogenesis of APECED.


Subject(s)
Autoantibodies/immunology , Gastrointestinal Microbiome/immunology , Polyendocrinopathies, Autoimmune/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Antibodies, Fungal/immunology , Autoimmunity , Case-Control Studies , Cytokines/immunology , Cytokines/metabolism , Duodenum/immunology , Duodenum/metabolism , Duodenum/microbiology , Duodenum/pathology , Female , Humans , Immunoglobulin G/immunology , Inflammatory Bowel Diseases/immunology , Male , Middle Aged , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/metabolism , T-Lymphocytes, Regulatory/metabolism , Young Adult
12.
J Am Soc Nephrol ; 27(10): 3220-3228, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26984885

ABSTRACT

Tubulointerstitial nephritis is a common cause of kidney failure and may have diverse etiologies. This form of nephritis is sometimes associated with autoimmune disease, but the role of autoimmune mechanisms in disease development is not well understood. Here, we present the cases of three patients with autoimmune polyendocrine syndrome type 1 who developed tubulointerstitial nephritis and ESRD in association with autoantibodies against kidney collecting duct cells. One of the patients developed autoantibodies targeting the collecting duct-specific water channel aquaporin 2, whereas autoantibodies of the two other patients reacted against the HOXB7 or NFAT5 transcription factors, which regulate the aquaporin 2 promoter. Our findings suggest that tubulointerstitial nephritis developed in these patients as a result of an autoimmune insult on the kidney collecting duct cells.


Subject(s)
Aquaporins/immunology , Autoantibodies/immunology , Kidney Tubules, Collecting/immunology , Nephritis, Interstitial/immunology , Adult , Female , Humans , Male , Middle Aged , Young Adult
13.
Tidsskr Nor Laegeforen ; 137(7): 540-543, 2017 Apr.
Article in English, Norwegian | MEDLINE | ID: mdl-28383228

ABSTRACT

Congenital adrenal hyperplasia is attributed to inherited enzyme defects in the adrenal cortex. The classical form results in reduced production of cortisol and aldosterone, accompanied by an increase in production of adrenal cortical androgens. This causes virilisation in girls, adrenocortical failure and early puberty in both sexes. This article describes the genetics, clinical picture, diagnostics and treatment.


Subject(s)
Adrenal Hyperplasia, Congenital , Adrenal Hyperplasia, Congenital/complications , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/drug therapy , Adrenal Hyperplasia, Congenital/genetics , Female , Glucocorticoids/administration & dosage , Glucocorticoids/therapeutic use , Humans , Male , Puberty, Precocious/etiology , Steroid 21-Hydroxylase/genetics , Virilism/etiology
14.
16.
J Transl Med ; 14: 68, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26956521

ABSTRACT

BACKGROUND: Autoimmune Addison's disease (AAD) is caused by multiple genetic and environmental factors. Variants of genes encoding immunologically important proteins such as the HLA molecules are strongly associated with AAD, but any environmental risk factors have yet to be defined. We hypothesized that primary or reactivating infections with cytomegalovirus (CMV) could represent an environmental risk factor in AAD, and that CMV specific CD8(+) T cell responses may be dysregulated, possibly leading to a suboptimal control of CMV. In particular, the objective was to assess the HLA-B8 restricted CD8(+) T cell response to CMV since this HLA class I variant is a genetic risk factor for AAD. METHODS: To examine the CD8(+) T cell response in detail, we analyzed the HLA-A2 and HLA-B8 restricted responses in AAD patients and healthy controls seropositive for CMV antibodies using HLA multimer technology, IFN-γ ELISpot and a CD107a based degranulation assay. RESULTS: No differences between patients and controls were found in functions or frequencies of CMV-specific T cells, regardless if the analyses were performed ex vivo or after in vitro stimulation and expansion. However, individual patients showed signs of reactivating CMV infection correlating with poor CD8(+) T cell responses to the virus, and a concomitant upregulation of interferon regulated genes in peripheral blood cells. Several recently diagnosed AAD patients also showed serological signs of ongoing primary CMV infection. CONCLUSIONS: CMV infection does not appear to be a major environmental risk factor in AAD, but may represent a precipitating factor in individual patients.


Subject(s)
Addison Disease/immunology , Addison Disease/virology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Immunity, Cellular , Immunity, Humoral , Addison Disease/blood , Adult , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Case-Control Studies , Cell Degranulation , Cytomegalovirus Infections/blood , Exocytosis , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/blood , Lymphocyte Count , Peptides/immunology , Species Specificity
17.
J Immunol ; 193(8): 3880-90, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25230752

ABSTRACT

Patients with the autoimmune polyendocrine syndrome type I (APS-I), caused by mutations in the autoimmune regulator (AIRE) gene, and myasthenia gravis (MG) with thymoma, show intriguing but unexplained parallels. They include uncommon manifestations like autoimmune adrenal insufficiency (AI), hypoparathyroidism, and chronic mucocutaneous candidiasis plus autoantibodies neutralizing IL-17, IL-22, and type I IFNs. Thymopoiesis in the absence of AIRE is implicated in both syndromes. To test whether these parallels extend further, we screened 247 patients with MG, thymoma, or both for clinical features and organ-specific autoantibodies characteristic of APS-I patients, and we assayed 26 thymoma samples for transcripts for AIRE and 16 peripheral tissue-specific autoantigens (TSAgs) by quantitative PCR. We found APS-I-typical autoantibodies and clinical manifestations, including chronic mucocutaneous candidiasis, AI, and asplenia, respectively, in 49 of 121 (40%) and 10 of 121 (8%) thymoma patients, but clinical features seldom occurred together with the corresponding autoantibodies. Both were rare in other MG subgroups (n = 126). In 38 patients with APS-I, by contrast, we observed neither autoantibodies against muscle Ags nor any neuromuscular disorders. Whereas relative transcript levels for AIRE and 7 of 16 TSAgs showed the expected underexpression in thymomas, levels were increased for four of the five TSAgs most frequently targeted by these patients' autoantibodies. Therefore, the clinical and serologic parallels to APS-I in patients with thymomas are not explained purely by deficient TSAg transcription in these aberrant AIRE-deficient tumors. We therefore propose additional explanations for the unusual autoimmune biases they provoke. Thymoma patients should be monitored for potentially life-threatening APS-I manifestations such as AI and hypoparathyroidism.


Subject(s)
Autoantigens/immunology , Polyendocrinopathies, Autoimmune/immunology , Thymoma/immunology , Thymus Neoplasms/immunology , Transcription Factors/genetics , Adrenal Insufficiency/immunology , Adult , Autoantibodies/blood , Autoantibodies/immunology , Autoantigens/genetics , Candidiasis, Chronic Mucocutaneous , Female , Heterotaxy Syndrome/immunology , Humans , Hypoparathyroidism/immunology , Interferon Type I/immunology , Interleukin-17/immunology , Interleukins/immunology , Male , Middle Aged , Myasthenia Gravis/genetics , Myasthenia Gravis/immunology , Polyendocrinopathies, Autoimmune/genetics , Thymoma/genetics , Thymus Neoplasms/genetics , AIRE Protein , Interleukin-22
18.
J Immunol ; 193(5): 2118-26, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25063864

ABSTRACT

The mechanisms behind destruction of the adrenal glands in autoimmune Addison's disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in >90% of patients, but these autoantibodies are not thought to mediate the disease. In this article, we demonstrate highly frequent 21-hydroxylase-specific T cells detectable in 20 patients with Addison's disease. Using overlapping 18-aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8(+) and CD4(+) T cell responses in a large proportion of Addison's patients both ex vivo and after in vitro culture of PBLs ≤20 y after diagnosis. In a large proportion of patients, CD8(+) and CD4(+) 21-hydroxylase-specific T cells were very abundant and detectable in ex vivo assays. HLA class I tetramer-guided isolation of 21-hydroxylase-specific CD8(+) T cells showed their ability to lyse 21-hydroxylase-positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate that strong CTL responses to 21-hydroxylase often occur in vivo, and that reactive CTLs have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer.


Subject(s)
Addison Disease/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Immunity, Cellular , Peptides/immunology , Steroid 21-Hydroxylase/immunology , Addison Disease/pathology , Adolescent , Adrenal Cortex Neoplasms/immunology , Adrenal Cortex Neoplasms/pathology , Adult , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Humans , Middle Aged
19.
Clin Endocrinol (Oxf) ; 83(1): 28-35, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25400085

ABSTRACT

CONTEXT: Conventional glucocorticoid replacement therapy in patients with Addison's disease (AD) is unphysiological with possible adverse effects on mortality, morbidity and quality of life. The diurnal cortisol profile can likely be restored by continuous subcutaneous hydrocortisone infusion (CSHI). OBJECTIVE: The aim of this study was to compare circadian hormone rhythms and insulin sensitivity in conventional thrice-daily regimen of glucocorticoid replacement therapy with CSHI treatment in patients with AD. DESIGN AND SETTING: An open, randomized, two-period, 12-week crossover multicentre trial in Norway and Sweden. PATIENTS: Ten Norwegian patients were admitted for 24-h sampling of hormone profiles. Fifteen Swedish patients underwent euglycaemic-hyperinsulinaemic clamp. INTERVENTION: Thrice-daily regimen of oral hydrocortisone (OHC) and CSHI treatment. MAIN OUTCOME MEASURE: We measured the circadian rhythm of cortisol, adrenocorticotropic hormone (ACTH), growth hormone (GH), insulin-like growth factor-1, (IGF-1), IGF-binding protein-3 (IGFBP-3), glucose, insulin and triglycerides during OHC and CSHI treatment. Euglycaemic-hyperinsulinaemic clamp was used to assess insulin sensitivity. RESULTS: Continuous subcutaneous hydrocortisone infusion provided a more physiological circadian cortisol curve including a late-night cortisol surge. ACTH levels showed a near normal circadian variation for CSHI. CSHI prevented a continuous decrease in glucose during the night. No difference in insulin sensitivity was observed between the two treatment arms. CONCLUSION: Continuous subcutaneous hydrocortisone infusion replacement re-established a circadian cortisol rhythm and normalized the ACTH levels. Patients with CSHI replacement had a more stable night-time glucose level compared with OHC without compromising insulin sensitivity. Thus, restoring night-time cortisol levels might be advantageous for patients with AD.


Subject(s)
Addison Disease/drug therapy , Glucocorticoids/administration & dosage , Hormone Replacement Therapy/methods , Hydrocortisone/administration & dosage , Insulin Resistance , Adrenocorticotropic Hormone/blood , Adult , Aged , Circadian Rhythm , Cross-Over Studies , Female , Glucose Clamp Technique , Humans , Hydrocortisone/blood , Infusions, Subcutaneous , Male , Middle Aged , Norway , Sweden , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL