Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Funct Integr Genomics ; 23(1): 57, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36752963

ABSTRACT

The agricultural sector and environmental safety both work hand in hand to promote sustainability in important issues like soil health, plant nutrition, food safety, and security. The conventional methods have greatly harmed the environment and people's health and caused soil fertility and quality to decline as well as deteriorate. Keeping in view the excessive exploitation and cascade of degradation events due to unsustainable farming practices, the need of the hour demands choosing an appropriate, eco-friendly strategy to restore soil health, plant nutrition, and environmental aspects. The priority highlights a need for a sustainable and environment-friendly upgradation of the present agricultural systems to utilize the beneficial aspects related to harnessing the gene-microbiome strategies which would help in the restoration and replenishment of the microbial pool. Thus, exploring the microbiome is the utmost priority which gives a deep insight into the different aspects related to soil and plant and stands out as an important contributor to plant health and productivity. "Microbes" are important drivers for the biogeochemical cycles and targets like sustainability and safety. This essential microbial bulk (soil microbiome) is greatly influenced by agricultural/farming practices. Therefore, with the help of microbiome engineering technologies like meta-transcriptomics, meta-proteomics, metabolomics, and novel gene-altering techniques, we can easily screen out the highly diverse and balanced microbial population in the bulk of soil, enhancing the soil's health and productivity. Importantly, we need to change our cultivation strategies to attain such sustainability. There is an urgent need to revert to natural/organic systems of cultivation patterns where the microbiome hub can be properly utilized to strengthen soil health, decrease insect pest and disease incidence, reduce greenhouse gas emissions, and ultimately prevent environmental degradation. Through this article, we wish to propose a shift in the cultivation pattern from chemical to the novel, upgraded gene-assisted designed eco-friendly methodologies which can help in incorporating, exploring, and harnessing the right microbiome consortium and can further help in the progression of environmentally friendly microbiome technologies for agricultural safety and productivity.


Subject(s)
Agriculture , Microbiota , Humans , Agriculture/methods , Soil , Plants , Soil Microbiology , Technology
2.
Environ Res ; 222: 115349, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36709022

ABSTRACT

Architecting a desirable and highly efficient nanocomposite for applications like adsorption, catalysis, etc. has always been a challenge. Metal Organic Framework (MOF)-based hierarchical composite has perceived popularity as an advanced adsorbent and catalyst. Hierarchically structured MOF material can be modulated to allow the surface interaction (external or internal) of MOF with the molecules of interest. They are well endowed with tunable functionality, high porosity, and increased surface area epitomizing mass transfer and mechanical stability of the fabricated nanostructure. Additionally, the anticipated optimization of nanocomposite can only be acquired by a thorough understanding of the synthesis techniques. This review starts with a brief introduction to MOF and the requirement for advanced nanocomposites after the setback faced by conventional MOF structures. Further, we discussed the background of MOF-based hierarchical composites followed by synthetic techniques including chemical and thermal treatment. It is important to rationally validate the successful nanocomposite fabrication by characterization techniques, an overview of challenges, and future perspectives associated with MOF-based hierarchically structured nanocomposite.


Subject(s)
Metal-Organic Frameworks , Nanocomposites , Water Purification , Nanocomposites/chemistry , Catalysis , Adsorption
3.
Environ Res ; 209: 112814, 2022 06.
Article in English | MEDLINE | ID: mdl-35090874

ABSTRACT

The prevalence of global health implications from the COVID-19 pandemic necessitates the innovation and large-scale application of disinfection technologies for contaminated surfaces, air, and wastewater as the significant transmission media of disease. To date, primarily recommended disinfection practices are energy exhausting, chemical driven, and cause severe impact on the environment. The research on advanced oxidation processes has been recognized as promising strategies for disinfection purposes. In particular, semiconductor-based photocatalysis is an effective renewable solar-driven technology that relies on the reactive oxidative species, mainly hydroxyl (•OH) and superoxide (•O2-) radicals, for rupturing the capsid shell of the virus and loss of pathogenicity. However, the limited understanding of critical aspects such as viral photo-inactivation mechanism, rapid virus mutagenicity, and virus viability for a prolonged time restricts the large-scale application of photocatalytic disinfection technology. In this work, fundamentals of photocatalysis disinfection phenomena are addressed with a reviewed remark on the reported literature of semiconductor photocatalysts efficacies against SARS-CoV-2. Furthermore, to validate the photocatalysis process on an industrial scale, we provide updated data on available commercial modalities for an effective virus photo-inactivation process. An elaborative discussion on the long-term challenges and sustainable solutions is suggested to fill in the existing knowledge gaps. We anticipate this review will ignite interest among researchers to pave the way to the photocatalysis process for disinfecting virus-contaminated environments and surfaces for current and future pandemics.


Subject(s)
COVID-19 , Disinfection , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2 , Wastewater
4.
Mikrochim Acta ; 189(5): 177, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35381890

ABSTRACT

At present, analytical lab-on-chip devices find their usage in different facets of chemical analysis, biological analysis, point of care analysis, biosensors, etc. In addition, graphene has already established itself as an essential component of advanced lab-on-chip devices. Graphene-based lab-on-chip devices have achieved appreciable admiration because of their peerless performance in comparison to others. However, to accomplish a sustainable future, a device must undergo "green screening" to check its environmental compatibility. Thus, extensive research is carried out globally to make the graphene-based lab-on-chip green, though it is yet to be achieved. Nevertheless, as a ray of hope, there are few existing strategies that can be stitched together for feasible fabrication of environment-friendly green graphene-based analytical lab-on-chip, and those prospective pathways are reviewed in this paper.


Subject(s)
Biosensing Techniques , Graphite , Lab-On-A-Chip Devices , Point-of-Care Systems , Prospective Studies
5.
J Environ Manage ; 308: 114617, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35121465

ABSTRACT

Nanotechnology holds huge potential for the prevention of various viral outbreaks that have increased at a disquieting rate over the past decades. Metal oxide nanomaterials with oxidative capability are the effective materials that provide platforms as well as tools for the well understanding of the mechanism, its detection, and treatment of various viral diseases like measles, influenza, herpes, ebola, current COVID-19 etc. In this inclusive review, we survey various previous research articles on different notable photoactive transition metal oxides that possess enough potential to act as antiviral agents for the deactivation of harmful viruses. We investigated and highlighted the plausible photocatalytic oxidative mechanism of photoactive transition metal oxides in degrading viral coatings, genomic RNA using suitable free radical generation. The key finding of the present review article including the discovery of a vision on the suitable photocatalytic transition metal oxides that have been proven to be excellent against harmful viruses and consequently combatting deadly CoV-2 in the environment. This review intends to provide conclusive remarks and a realistic outlook on other advanced photocatalytic metal oxides as a potential solution in battling other similar upcoming pandemics.


Subject(s)
COVID-19 , Viruses , Disinfection , Humans , Oxides , SARS-CoV-2
6.
Curr Opin Colloid Interface Sci ; 55: 101480, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34149297

ABSTRACT

The global epidemic owing to COVID-19 has generated awareness to ensuring best practices for avoiding the microorganism spread. Indeed, because of the increase in infections caused by bacteria and viruses such as SARS-CoV-2, the global demand for antimicrobial materials is growing. New technologies by using polymeric systems are of great interest. Virus transmission by contaminated surfaces leads to the spread of infectious diseases, so antimicrobial coatings are significant in this regard. Moreover, antimicrobial food packaging is beneficial to prevent the spread of microorganisms during food processing and transportation. Furthermore, antimicrobial textiles show an effective role. We aim to provide a review of prepared antimicrobial polymeric materials for use in coating, food packaging, and textile during the COVID-19 pandemic and after pandemic.

7.
J Sep Sci ; 38(3): 426-32, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25403651

ABSTRACT

Chromatographic monitoring of chlorofluorocarbons in air requires the preconcentration of these highly volatile species. In this paper, we present functionalized multiwalled carbon nanotubes as effective sorbents for a microtrap designed for chlorofluorocarbons preconcentration. Among the commercial carbons and carbon nanotubes studied, functionalization via carboxylation and propyl amine was most effective for dichlorofluoromethane and trichlorofluoromethane (Freon 11), which were selected as representative chlorofluorocarbons. The results show that carbon nanotubes functionalized with a polar groups led to as much as a 300% increase in breakthrough volume and the desorption bandwidth was reduced by 2.5 times.

8.
Bioelectrochemistry ; 156: 108623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38070365

ABSTRACT

Field-effect transistor (FET) biosensors use FETs to detect changes in the amount of electrical charge caused by biomolecules like antigens and antibodies. COVID-19 can be detected by employing these biosensors by immobilising bio-receptor molecules that bind to the SARS-CoV-2 virus on the FET channel surface and subsequent monitoring of the changes in the current triggered by the virus. Graphene Field-effect Transistor (GFET)-based biosensors utilise graphene, a two-dimensional material with high electrical conductivity, as the sensing element. These biosensors can rapidly detect several biomolecules including the SARS-CoV-2 virus, which is responsible for COVID-19. GFETs are ideal for real-time infectious illness diagnosis due to their great sensitivity and specificity. These graphene transistor-based biosensors could revolutionise clinical diagnostics by generating fast, accurate data that could aid pandemic management. GFETs can also be integrated into point-of-care (POC) diagnostic equipment. Recent advances in GFET-type biosensors for SARS-CoV-2 detection are discussed here, along with their associated challenges and future scope.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Humans , SARS-CoV-2 , COVID-19/diagnosis , Biosensing Techniques/methods , Antibodies
9.
Nanoscale ; 16(30): 14195-14212, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39016018

ABSTRACT

Graphene-based sensors have emerged as promising tools for environmental monitoring due to their exceptional properties such as high surface area, excellent electrical conductivity, and sensitivity to various analytes. This paper presents a review of recent advancements in the development and application of graphene-based sensors for the detection of heavy metal ions and organic pollutants. These sensors employ either graphene or its derivatives, often in combination with graphene hybrid nanocomposites, as the primary sensing material. The synthesis methods of graphene and sensing mechanisms of graphene-based sensors are discussed. Furthermore, performance metrics including the determination range and detection limits of these sensors are itemized. The potential challenges and future directions in the field of graphene-based sensors for environmental monitoring are also highlighted. Overall, this review provides valuable insights into the current state-of-the-art technologies and paves the way for the development of highly efficient and reliable sensors for environmental monitoring purposes.

10.
Nanoscale ; 16(14): 6900-6914, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38511341

ABSTRACT

The healthcare landscape has experienced a profound and irreversible transformation, primarily driven by the emergence of nanomaterial-assisted point-of-care (POC) devices. The inclusion of nanomaterials in POC devices has revolutionized healthcare by enabling rapid, on-site diagnostics with minimal infrastructure requirements. Among the materials poised to lead this technological revolution, green graphene emerges as a compelling contender. It possesses a unique combination of exceptional material properties and environmentally conscious attributes. These attributes include its substantial surface area, unparalleled electrical conductivity, and inherent biocompatibility. This article embarks on an exploration of POC devices incorporating green graphene. It meticulously dissects the intricacies of their design, performance characteristics, and diverse applications. Throughout the exposition, the transformative impact of green graphene on the advancement of POC diagnostics takes centre stage. It underscores the material's potential to drive sustainable and effective healthcare solutions, marking a significant milestone in the evolution of healthcare technology.


Subject(s)
Graphite , Nanostructures , Point-of-Care Systems , Graphite/chemistry , Point-of-Care Testing , Nanostructures/chemistry
11.
Food Chem ; 450: 139381, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653048

ABSTRACT

The widespread use of antibiotics in agricultural and animal husbandry to treat bacterial illnesses has resulted in a rise in antibiotic-resistant bacteria. These bacteria can grow when antibiotic residues are present in food items, especially in edible animal products. As a result, it is crucial to monitor and regulate the amounts of antibiotics in food. Magnetic analytical extractions (MAEs) have emerged as a potential approach for extracting antibiotic residues from food using magnetic nanoparticles (MNPs). Recent improvements in MAEs have resulted in the emergence of novel MNPs with better selectivity and sensitivity for the extraction of antibiotic residues from food samples. Consequently, this review paper addresses current developments in MAE for extracting antibiotic residues from edible samples. It also provides a critical analysis of contemporary MAE practices. The current issues and potential future developments in this field are also discussed, thereby providing a framework for future study paths.


Subject(s)
Anti-Bacterial Agents , Drug Residues , Food Contamination , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Food Contamination/analysis , Drug Residues/analysis , Drug Residues/chemistry , Animals , Magnetite Nanoparticles/chemistry , Magnetics , Chemical Fractionation/methods
12.
Adv Colloid Interface Sci ; 328: 103163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749384

ABSTRACT

Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/chemistry , Humans , Tissue Engineering/methods , Bioprinting/methods , Printing, Three-Dimensional , Animals , Drug Delivery Systems , Cell Culture Techniques , Cell Culture Techniques, Three Dimensional/methods
13.
Chemosphere ; 352: 141419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360410

ABSTRACT

The survival of humanity is severely threatened by the massive accumulation of waste in the ecosystem. One plausible solution for the management and upcycling of waste is conversing waste at the molecular level and deriving carbon-based nanomaterial. The field of carbon nanomaterials with distinctive properties, such as exceptionally large surface areas, good thermal and chemical stability, and improved propagation of charge carriers, remains a significant area of research. The study demonstrates recent developments in high-value carbon-based photocatalysts synthesis from various waste precursors, including zoonotic, phytogenic, polyolefinic, electronic, and biomedical, highlighting the progression as photocatalysts and adsorbents for wastewater treatment and water splitting applications. This review highpoints the benefits of using waste as a precursor to support sustainability and circular economy and the risks associated with their use. Finally, we support that a sustainable society will eventually be realized by exploring present obstacles and potential steps for creating superior carbon-based nanomaterials in the future.


Subject(s)
Nanostructures , Water Pollutants, Chemical , Water Purification , Carbon , Ecosystem
14.
Materials (Basel) ; 16(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770075

ABSTRACT

COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.

15.
Biomolecules ; 13(7)2023 06 22.
Article in English | MEDLINE | ID: mdl-37509060

ABSTRACT

An essential aspect of successful cancer diagnosis is the identification of malignant tumors during the early stages of development, as this can significantly diminish patient mortality rates and increase their chances of survival. This task is facilitated by cancer biomarkers, which play a crucial role in determining the stage of cancer cells, monitoring their growth, and evaluating the success of treatment. However, conventional cancer detection methods involve several intricate steps, such as time-consuming nucleic acid amplification, target detection, and a complex treatment process that may not be appropriate for rapid screening. Biosensors are emerging as promising diagnostic tools for detecting cancer, and carbon nanotube (CNT)- and graphene-based transistor biosensors have shown great potential due to their unique electrical and mechanical properties. These biosensors have high sensitivity and selectivity, allowing for the rapid detection of cancer biomarkers at low concentrations. This review article discusses recent advances in the development of CNT- and graphene-based transistor biosensors for cancer detection.


Subject(s)
Biosensing Techniques , Graphite , Nanotubes, Carbon , Neoplasms , Humans , Biomarkers, Tumor , Biosensing Techniques/methods , Neoplasms/diagnosis
16.
Gels ; 9(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38131946

ABSTRACT

Hydrogels have emerged as a versatile and promising class of materials in the field of 3D printing, offering unique properties suitable for various applications. This review delves into the intersection of hydrogels and 3D printing, exploring current research, technological advancements, and future directions. It starts with an overview of hydrogel basics, including composition and properties, and details various hydrogel materials used in 3D printing. The review explores diverse 3D printing methods for hydrogels, discussing their advantages and limitations. It emphasizes the integration of 3D-printed hydrogels in biomedical engineering, showcasing its role in tissue engineering, regenerative medicine, and drug delivery. Beyond healthcare, it also examines their applications in the food, cosmetics, and electronics industries. Challenges like resolution limitations and scalability are addressed. The review predicts future trends in material development, printing techniques, and novel applications.

17.
Polym Bull (Berl) ; 80(1): 165-183, 2023.
Article in English | MEDLINE | ID: mdl-35106016

ABSTRACT

One of the lethal illnesses that humanity has ever seen is COVID-19 irrefutably. The speed of virus spread is high and happens through polluted surfaces, respiratory droplets, and bodily fluids. It was found that without an efficient vaccine or specific treatment using personal protective equipment, preventing contamination of hands, and social distancing are the best ways to stay safe during the present pandemic. In this line, polymers, nanotechnology, and additive manufacturing, or 3D printing technology have been considered to probe, sense, and treat COVID-19. All aforementioned fields showed undeniable roles during the COVID-19 pandemic, which their contributions have been reviewed here. Finally, the effect of COVID-19 on the environment, alongside its positive and negative effects has been mentioned.

18.
Adv Colloid Interface Sci ; 314: 102868, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37002958

ABSTRACT

The progress and use of effective and economic anticorrosive resources are in high mandate due to huge safety and economic concerns about corrosion. Significant advancements have already been achieved that help in minimizing corrosion costs up to US $375 to US $875 billion annually. The use of zeolites in anticorrosive and self-healing coatings is well-studied and documented in many reports. The self-healing property of zeolite-based coatings is attributed to their ability to provide anticorrosive protection in the defected areas through forming protective oxide films i.e. passivation. The synthesis of zeolites from the traditional hydrothermal method is associated with several drawbacks including their high cost and discharge of harmful gases such as oxides of nitrogen (NOx) and greenhouse gases (CO2 and CO). In view of this, some green approaches such as solvent-free, organotemplate-free, use of safer organic templates, green solvents (e.g. ILs) and energy efficient (MW and US) heating, one-step reactions (OSRs) etc. are adopted in the green synthesis of zeolites. Recently, the self-healing properties of greenly synthesized zeolites are documented along with their mechanism of corrosion inhibition.

19.
Adv Colloid Interface Sci ; 311: 102822, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442322

ABSTRACT

Surfactants enjoy an augmented share of hydrophilicity and hydrophobicity and are well-known for their anticorrosive potential. The use of non-toxic surfactants is gaining growing interest because of the scaling demands of green chemistry. Green surfactants have successfully replaced traditional toxic surfactant-based corrosion inhibitors. Recently, many reports described the corrosion inhibition potential of green surfactants. The present article aims to describe the recent advancements in using green surfactants in corrosion mitigation. They create a charge transfer barrier through their adsorption at the interface of the metal and the environment. Their adsorption is well explained by the Langmuir adsorption isotherm. In the adsorbed layer, their hydrophilic polar heads orient toward the metal side and their hydrophobic tails orient toward the solution side. They block the active sites and retard the anodic and cathodic and act as mixed-type inhibitors. Their adsorption and bonding nature are fruitfully supported by surface analyses. They can form mono- or multilayers depending upon the nature of the metal, electrolyte and experimental conditions. The challenges and opportunities of using green surfactants as corrosion inhibitors have also been described.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Surface-Active Agents/chemistry , Corrosion , Hydrophobic and Hydrophilic Interactions , Adsorption
20.
Sci Total Environ ; 858(Pt 1): 159859, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36349627

ABSTRACT

Plastic litter is one of key reasons of environmental concern due to its adverse effect on ecosystem and health. Exposure of plastic litter to anthropogenic and ecological conditions results in a variety of emerging litter variants that fluctuate in composition, mechanical, and chemical properties. Considering the properties of these plastic litter variants, it is anticipated that the transportation of foreign species or microbial pathogens together with these litter variants is most likely to affect the marine ecosystem. Moreover the plastic litter may enter the plastic cycle or marine biota and can spread across the ocean. Very recently several emerging plastic litter variants such as anthropoquinas, plasticrust, pyroplastic, plastitar, and plastiglomerate have been reported along the coastal areas across the oceans. The purpose of this perspective is to comprehend these emerging plastic litter variants, integrate the latest developments and highlight their adverse effects on the coastal ecosystem. Further, it details the make-up, place of origin, and management strategies for these plastic litter variants.


Subject(s)
Ecosystem , Plastics , Waste Products/analysis , Environmental Monitoring/methods , Biota
SELECTION OF CITATIONS
SEARCH DETAIL