ABSTRACT
BACKGROUND: Based on a limited number of reported families, biallelic CA8 variants have currently been associated with a recessive neurological disorder named, cerebellar ataxia, mental retardation, and dysequilibrium syndrome 3 (CAMRQ-3). OBJECTIVES: We aim to comprehensively investigate CA8-related disorders (CA8-RD) by reviewing existing literature and exploring neurological, neuroradiological, and molecular observations in a cohort of newly identified patients. METHODS: We analyzed the phenotype of 27 affected individuals from 14 families with biallelic CA8 variants (including data from 15 newly identified patients from eight families), ages 4 to 35 years. Clinical, genetic, and radiological assessments were performed, and zebrafish models with ca8 knockout were used for functional analysis. RESULTS: Patients exhibited varying degrees of neurodevelopmental disorders (NDD), along with predominantly progressive cerebellar ataxia and pyramidal signs and variable bradykinesia, dystonia, and sensory impairment. Quadrupedal gait was present in only 10 of 27 patients. Progressive selective cerebellar atrophy, predominantly affecting the superior vermis, was a key diagnostic finding in all patients. Seven novel homozygous CA8 variants were identified. Zebrafish models demonstrated impaired early neurodevelopment and motor behavior on ca8 knockout. CONCLUSION: Our comprehensive analysis of phenotypic features indicates that CA8-RD exhibits a wide range of clinical manifestations, setting it apart from other subtypes within the category of CAMRQ. CA8-RD is characterized by cerebellar atrophy and should be recognized as part of the autosomal-recessive cerebellar ataxias associated with NDD. Notably, the presence of progressive superior vermis atrophy serves as a valuable diagnostic indicator. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Subject(s)
Cerebellar Ataxia , Zebrafish , Humans , Cerebellar Ataxia/genetics , Child , Adolescent , Male , Female , Child, Preschool , Animals , Adult , Young Adult , Anoctamins/genetics , Intellectual Disability/genetics , Phenotype , Neurodevelopmental Disorders/geneticsABSTRACT
KEY MESSAGE: GhHB14_D10 and GhREV_D5 regulated secondary cell wall formation and played an important role in fiber development. Cotton serves as an important source of natural fiber, and the biosynthesis of the secondary cell wall plays a pivotal role in determining cotton fiber quality. Nevertheless, the intricacies of this mechanism in cotton fiber remain insufficiently elucidated. This study investigates the functional roles of GhHB14_D10 and GhREV_D5, two HD-ZIP III transcription factors, in secondary cell wall biosynthesis in cotton fibers. Both GhHB14_D10 and GhREV_D5 were found to be localized in the nucleus with transcriptional activation activity. Ectopic overexpression of GhHB14_D10 and GhREV_D5 in Arabidopsis resulted in changed xylem differentiation, secondary cell wall deposition, and expression of genes related to the secondary cell wall. Silencing of GhHB14_D10 and GhREV_D5 in cotton led to enhanced fiber length, reduced cell wall thickness, cellulose contents and expression of secondary cell wall-related genes. Moreover, GhHB14_D10's direct interaction with GhREV_D5, and transcriptional regulation of cellulose biosynthesis genes GhCesA4-4 and GhCesA7-2 revealed their collaborative roles in secondary cell wall during cotton fiber development. Overall, these results shed light on the roles of GhHB14_D10 and GhREV_D5 in secondary cell wall biosynthesis, offering a strategy for the genetic improvement of cotton fiber quality.
Subject(s)
Arabidopsis , Cotton Fiber , Transcription Factors/genetics , Gossypium/genetics , Arabidopsis/genetics , Cell Wall , CelluloseABSTRACT
Drinking water quality deteriorates rapidly due to anthropogenic activities and rapid population growth. These activities, in developing countries, will lead to water scarcity. In Pakistan, 70% of the population has no access to safe water, and people use canal water to drink. This study performed hydrochemical, hydrogeological, and cancer risk analyses on Tahsil Hasilpur, Bahawalpur, Pakistan. Thirteen tube wells were selected for groundwater and borehole log study. Twenty-two drinking water quality parameters were analyzed using standard methods and quality checks. The borehole data (2D and 3D) shows the abundance of sand (fine and coarse) with some uniformities, which changes the groundwater quality. The results of water quality parameters show that the concentration of TDS (2064-11,159 mg/L), Cl-1 (213-4917 mg/L), As+3 (0.048-0.158 mg/L), Pb+2 (1.294-1.673 mg/L), and Cd+2 (0.008-0.053 mg/L) were beyond guideline values. The statistical analysis showed that the parameters have a moderate to strong correlation (Pearson correlation), which may be due to the same origin (ANOVA). The principal component analysis and cluster analysis confirm the multiple sources of pollutants in the groundwater of the study area. The Piper, Durov, Stiff, and Scholler diagrams confirm that the groundwater system has an abundance of Ca+2 and Mg+2 with Cl-1. The Gibbs diagram showed that the groundwater is not saturated and tends to dissolve more minerals. The hazard quotient values are above 1.0, which indicates noncancer risk severity. The HQ trend was As+3 > Pb+2 > Cd+2 > Ni+2 > Cu+2 > Cr+2 > Zn+2 > Fe+2. The cancer risk values showed that 3-5 people/100 population were exposed to cancer risk. The trend of CR was As+3 > Cd+2 > Cr+2 > Pb+2 > Ni+2. The GIP mapping of pollutants showed that the concentration of pollutants near the canals was high compared to the locations away from the canal. The overall groundwater quality is alarming and needs immediate government attention.
Subject(s)
Drinking Water , Environmental Pollutants , Groundwater , Neoplasms , Humans , Anthropogenic Effects , Pakistan , Cadmium , Lead , Environmental Monitoring , Neoplasms/epidemiology , Risk AssessmentABSTRACT
Background & Objectives: Ataxia is usually caused by cerebellar pathology or a decrease in vestibular or proprioceptive afferent input to the cerebellum. It is characterized by uncoordinated walking, truncal instability, body or head tremors, uncontrolled coordination of the hands, dysarthria, and aberrant eye movements. The objective of the current investigation was to identify the underlying genetic cause of the hereditary ataxia that affects the Pakistani population. Methods: We studied numerous consanguineous Pakistani families whose members had ataxia-related clinical symptoms to varying degrees. The families were chosen from the Punjab province, and the neurophysician conducted a clinical examination. Peripheral blood samples from both sick and healthy members of the family were taken after obtaining informed consent. Genomic DNA was used to find potential variations in probands using whole exome sequencing. The study was carried out at the University Hospital of Tübingen, Germany, and Government College University in Faisalabad, Pakistan, during 2018-2023. Results: The molecular analysis of these families identified different variants including SGCB: c.902C>T, c.668G>A, ATM: c.6196_6197insGAA, SPG11: c.5769del, SETX c.5525_5533del, and ATM: c.7969A>T. A noteworthy mutation in ATM and SETX was observed among them, and its symptoms were shown to cause ataxia in these families. Conclusion: The current study broadens the mutation spectrum of several hereditary ataxia types and suggests the next generation sequencing in conjunction with clinical research for a more accurate diagnosis of overlapping phenotypes of this disorder in the Pakistani population.
ABSTRACT
Salinity stress is one of the major hurdles in agriculture which adversely affects crop production. It can cause osmotic imbalance, ion toxicity that disrupts essential nutrient balance, impaired nutrient uptake, stunted growth, increased oxidative stress, altered metabolism, and diminished crop yield and quality. However, foliar application of osmoprotectant is becoming popular to resolve this issue in crops. These osmoprotectants regulate the cellular osmotic balance and protect plants from the detrimental effects of high salt concentrations. Furthermore, the role of arbuscular mycorrhizae (AMF) is also established in this regard. These AMF effectively reduce the salinity negative effects by improving the essential nutrient balance via the promotion of root growth. That's why keeping in mind the effectiveness of osmoprotectants current study was conducted on cotton. Total of six levels of γ-Aminobutyric acid (GABA = 0 mM, 0. 5 mM, and 1 mM) and ectoine (ECT = 0 mM, 0.25 mM, and 0.5 mM) were applied as treatments in 3 replications. Results showed that 0.5 mM γ-Aminobutyric acid and ectoine performed significantly best for the improvement in cotton growth attributes. It also caused significant enhancement in K and Ca contents of the leaf, stem, bur, and seeds compared to the control. Furthermore, 0.5 mM γ-Aminobutyric acid and ectoine also caused a significant decline in Cl and Na contents of leaf, stem, bur, and seeds of cotton compared to control under salinity stress. A significant enhancement in chlorophyll contents, gas exchange attributes, and decline in electrolyte leakage validated the effectiveness of 0.5 mM γ-Aminobutyric acid and ectoine over control. In conclusion, 0.5 mM γ-Aminobutyric acid and ectoine have the potential to mitigate the salinity stress in cotton.
Subject(s)
Mycorrhizae , Soil , Antioxidants , Mycorrhizae/physiology , Sodium Chloride/pharmacology , gamma-Aminobutyric AcidABSTRACT
We propose a new fault diagnosis model for rolling bearings based on a hybrid kernel support vector machine (SVM) and Bayesian optimization (BO). The model uses discrete Fourier transform (DFT) to extract fifteen features from vibration signals in the time and frequency domains of four bearing failure forms, which addresses the issue of ambiguous fault identification caused by their nonlinearity and nonstationarity. The extracted feature vectors are then divided into training and test sets as SVM inputs for fault diagnosis. To optimize the SVM, we construct a hybrid kernel SVM using a polynomial kernel function and radial basis kernel function. BO is used to optimize the extreme values of the objective function and determine their weight coefficients. We create an objective function for the Gaussian regression process of BO using training and test data as inputs, respectively. The optimized parameters are used to rebuild the SVM, which is then trained for network classification prediction. We tested the proposed diagnostic model using the bearing dataset of the Case Western Reserve University. The verification results show that the fault diagnosis accuracy is improved from 85% to 100% compared with the direct input of vibration signal into the SVM, and the effect is significant. Compared with other diagnostic models, our Bayesian-optimized hybrid kernel SVM model has the highest accuracy. In laboratory verification, we took sixty sets of sample values for each of the four failure forms measured in the experiment, and the verification process was repeated. The experimental results showed that the accuracy of the Bayesian-optimized hybrid kernel SVM reached 100%, and the accuracy of five replicates reached 96.7%. These results demonstrate the feasibility and superiority of our proposed method for fault diagnosis in rolling bearings.
Subject(s)
Laboratories , Support Vector Machine , Humans , Bayes Theorem , Normal Distribution , VibrationABSTRACT
In the industrial sector, tool health monitoring has taken on significant importance due to its ability to save labor costs, time, and waste. The approach used in this research uses spectrograms of airborne acoustic emission data and a convolutional neural network variation called the Residual Network to monitor the tool health of an end-milling machine. The dataset was created using three different types of cutting tools: new, moderately used, and worn out. For various cut depths, the acoustic emission signals generated by these tools were recorded. The cuts ranged from 1 mm to 3 mm in depth. In the experiment, two distinct kinds of wood-hardwood (Pine) and softwood (Himalayan Spruce)-were employed. For each example, 28 samples totaling 10 s were captured. The trained model's prediction accuracy was evaluated using 710 samples, and the results showed an overall classification accuracy of 99.7%. The model's total testing accuracy was 100% for classifying hardwood and 99.5% for classifying softwood.
ABSTRACT
Polydatin or 3-O-ß-d-resveratrol-glucopyranoside (PD), a stilbenoid component of Polygonum cuspicadum (Polygonaceae), has a variety of biological roles. In traditional Chinese medicine, P. cuspicadum extracts are used for the treatment of infections, inflammation, and cardiovascular disorders. Polydatin possesses a broad range of biological activities including antioxidant, anti-inflammatory, anticancer, and hepatoprotective, neuroprotective, and immunostimulatory effects. Currently, a major proportion of the population is victimized with cervical lung cancer, ovarian cancer and breast cancer. PD has been recognized as a potent anticancer agent. PD could effectively inhibit the migration and proliferation of ovarian cancer cells, as well as the expression of the PI3K protein. The malignancy of lung cancer cells was reduced after PD treatments via targeting caspase 3, arresting cancer cells at the S phase and inhibiting NLRP3 inflammasome by downregulation of the NF-κB pathway. This ceases cell cycle, inhibits VEGF, and counteracts ROS in breast cancer. It also prevents cervical cancer by regulating epithelial-to-mesenchymal transition (EMT), apoptosis, and the C-Myc gene. The objective of this review is thus to unveil the polydatin anticancer potential for the treatment of various tumors, as well as to examine the mechanisms of action of this compound.
Subject(s)
Breast Neoplasms , Stilbenes , Humans , Female , Signal Transduction , Stilbenes/pharmacology , Glucosides/pharmacologyABSTRACT
In-house receptors (IHRs) were isolated from non-immunized poultry liver to analyze selected contaminants and residues in targeted food and feed using 14C- and 3H-labeled radiotracers. Matrix (2 g) was homogenized and centrifuged with the resultant pellet used as IHRs. These were characterized for total protein contents (6.1 mg mL-1) and compared with commercial receptors for aflatoxins (0.28 mg tablet-1) and chloramphenicol (0.12 mg tablet-1). Gel electrophoresis of the IHRs showed a mixture of polypeptides-an important attribute for multi-residues analysis-compared with commercial receptors that presented specific protein bands at 65 kDa (chloramphenicol) and 70 kDa (aflatoxins). The inhibition index of IHRs for aflatoxins B1 and B2 in wheat and bovine feed and chloramphenicol in bovine tissue at, above, and below maximum limits or minimum required performance limits, revealed an inverse relationship between radiotracer and analyte concentrations. Saturation with increased radioligand concentration up to 5.5 kBq indicated higher holding potential. However, increasing incubation time to 30 min did not significantly increase analyte-binding. The IHRs performance was comparable to commercial receptors with control point averages of 348, 410, 555, and 307 counts per minute determined for gentamicin, chloramphenicol, oxytetracycline, and aflatoxin M1, respectively in local milk samples.
Subject(s)
Aflatoxins , Oxytetracycline , Aflatoxin M1/analysis , Aflatoxins/analysis , Animal Feed/analysis , Animals , Cattle , Chloramphenicol/analysis , Food Contamination/analysis , Gentamicins , Liver/chemistry , Oxytetracycline/analysis , PoultryABSTRACT
BACKGROUND & OBJECTIVES: Primary Microcephaly (MCPH) is a rare neurogenetic disease, manifesting congenitally reduced head circumference and non-progressive intellectual disability (ID). To date, twenty-eight genes with biallelic mutations have been reported for this disorder. The study aimed for molecular genetic characterization of Pakistani families segregating MCPH. METHODS: We studied two unrelated consanguineous families (family A and B) presenting >2 patients with diagnostic symptoms of MCPH, born to asymptomatic parents. We employed whole-exome sequencing (WES) of probands to find putative causal mutations. The candidate variants were further confirmed and analyzed for co-segregation by Sanger sequencing of all available members of each family. This study was conducted at Government College University, Faisalabad, Pakistan, and Cologne Center for Genomics (CCG), University of Cologne, Germany; during 2017-2020. RESULTS: We identified a novel homozygous variant c.10097_10098delGA, p.(Gly3366Glufs*19) in exon 26 of ASPM gene in family A which presents with moderate intellectual disability, speech impairment, visual abnormalities, seizures, and ptyalism. Family B was found to segregate nonsense, homozygous variant c.448C>T p.(Arg150*) in CDK5RAP2. The patients also exhibited mild to severe seizures without ptyalism that has not been previously reported in patients with mutations in the CDK5RAP2 gene. CONCLUSION: We report a novel mutation in ASPM and ultra-rare mutation in the CDK5RAP2 gene, both causing primary microcephaly. The study expands the mutational spectrum of the ASPM gene to 212, and also adds to the clinical spectrum of CDK5RAP2 mutations. It also demonstrated the utility of WES in the investigation and genetic diagnosis of genetically heterogeneous disorders like MCPH. These findings would aid in diagnostic and preventive strategies including carrier screening, cascade testing, and genetic counselling.
ABSTRACT
An imbalance between oxidative stress and antioxidative defence mediates a variety of diseases pathogenesis. The present study aims to assess the possible outcome of supplementation of oral vitamin-C (VC), an antioxidant, in Viral Hepatitis C (HCV) treatment as an adjuvant therapy. 200 HCV-patients were selected, 100 were given Vitamin-C (1000 mg/day) along with anti HCV treatment (sofosbuvir plus daclatasvir) while the other 100 took only anti-HCV treatment for 4weeks. The serum ascorbic acid (Vitamin-C) levels and functions of the liver were tested before and after the VC supplementation. HCV patients with relatively low serum ascorbic acid showed significant improvement after the intake of vitamin C. After 4 weeks of treatment, AST, ALP, albumin, and total, direct and indirect bilirubin were improved significantly in the VC group; whereas only ALT and indirect bilirubin were improved in both groups when associated with the control subjects. Comparing the two treatment groups at 4weeks; more effective and significant improvement was observed in ALT (p<0.01), AST (p<0.001), direct (p<0.01) and indirect bilirubin (p<0.001), total proteins (p<0.001) and albumin (p<0.05) in patients with VC supplementation on anti-viral treatment compared to only anti-viral treatment group. Thus, VC supplementation improves the antiviral therapy outcome by bestowing a beneficial effect in minimizing liver damage in HCV cases.
Subject(s)
Hepatitis C, Chronic , Hepatitis C , Albumins , Antioxidants/therapeutic use , Antiviral Agents/therapeutic use , Ascorbic Acid/therapeutic use , Bilirubin , Dietary Supplements , Drug Therapy, Combination , Hepacivirus , Hepatitis C/drug therapy , Hepatitis C, Chronic/drug therapy , Humans , Treatment Outcome , Vitamins/therapeutic useABSTRACT
Herein, we report on a reagentless electroanalytical methodology for automatized acid-base titrations of water samples that are confined into very thin spatial domains. The concept is based on the recent discovery from our group (Wiorek, A. Anal. Chem. 2019, 91, 14951-14959), in which polyaniline (PANI) films were found to be an excellent material to release a massive charge of protons in a short time, achieving hence the efficient (and controlled) acidification of a sample. We now demonstrate and validate the analytical usefulness of this approach with samples collected from the Baltic Sea: the titration protocol indeed acts as an alkalinity sensor via the calculation of the proton charge needed to reach pH 4.0 in the sample, as per the formal definition of the alkalinity parameter. In essence, the alkalinity sensor is based on the linear relationship found between the released charge from the PANI film and the bicarbonate concentration in the sample (i.e., the way to express alkalinity measurements). The observed alkalinity in the samples presented a good agreement with the values obtained by manual (classical) acid-base titrations (discrepancies <10%). Some crucial advantages of the new methodology are that titrations are completed in less than 1 min (end point), the PANI film can be reused at least 74 times over a 2 week period (<5% of decrease in the released charge), and the utility of the PANI film to even more decrease the final pH of the sample (pH â¼2) toward applications different from alkalinity detection. Furthermore, the acidification can be accomplished in a discrete or continuous mode depending on the application demands. The new methodology is expected to impact the future digitalization of in situ acid-base titrations to obtain high-resolution data on alkalinity in water resources.
Subject(s)
Bicarbonates , Seawater , Hydrogen-Ion ConcentrationABSTRACT
Human gut microbiota consists of various microorganisms whose numbers are similar to those of human cells. Human gut microbes and the brain form bidirectional communications through the brain-gut-axis, and play a central role in normal physiological processes and in pathogenesis of many human diseases. Accumulating evidence has demonstrated the crucial effect of gut microbes in proper brain functions and under disease conditions. Here we first focus on revealing current knowledge of the role of gut microbes in neural development and functions. We then summarize mutual relationships between gut microbes and human diseases, in particular neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Multiple sclerosis. Finally, we highlight ongoing studies in exploring gut microbes in treatments of human diseases. Applying gut microbes as a means in treatment of human diseases is becoming a promising research direction, and has a great potential in clinical practice.
Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Neurodegenerative Diseases , Alzheimer Disease/therapy , Brain , Humans , Neurodegenerative Diseases/therapyABSTRACT
Intelligent machining has become an important part of manufacturing systems because of the increased demand for productivity. Tool condition monitoring is an integral part of these systems. Airborne acoustic emission from the machining process is a vital indicator of tool health, however, it is highly affected by background noise. Reducing the background noise helps in developing a low-cost system. In this research work, a feedforward neural network is used as an adaptive filter to reduce the background noise. Acoustic signals from four different machines in the background are acquired and are introduced to a machining signal at different speeds and feed-rates at a constant depth of cut. These four machines are a three-axis milling machine, a four-axis mini-milling machine, a variable speed DC motor, and a grinding machine. The backpropagation neural network shows an accuracy of 75.82% in classifying the background noise. To reconstruct the filtered signal, a novel autoregressive moving average (ARMA)-based algorithm is proposed. An average increase of 71.3% in signal-to-noise ratio (SNR) is found before and after signal reconstruction. The proposed technique shows promising results for signal reconstruction for the machining process.
Subject(s)
Algorithms , Neural Networks, Computer , Acoustics , Noise , Signal-To-Noise RatioABSTRACT
The liver is a fundamental metabolic organ that performs many essential functions including the detoxification of toxic substances present in the body. Exposure to various toxicants leads the liver towards hepatic injury. This study was planned to estimate the hepatoprotective and regenerative efficacy of Quinoa seeds (Chenopodium quinoa) extract against carbon tetrachloride (CCl4) induced liver damage. At a dose of 1ml/kg (153.8mg/kg) body weight carbon tetrachloride (CCl4) was used intraperitoneally to induce hepatic injury in Wistar rats. Silymarin (30mg/kg body weight, p.o.), an antioxidant was used as a reference standard drug. Subsequently, ethanolic extract of Quinoa seeds (QEE) was administered at 400 and 600mg/kg body weight through oral gavage. Various biochemical and regenerative biomarkers were assessed to evaluate the potential efficacy of QEE in liver tissue regeneration. Results revealed that QEE administration significantly reduced the CCl4-induced raised quantities of alanine transaminase (ALT), aspartate transaminase (AST), and total oxidative stress (TOS) while, significantly improved the level of triiodothyronine (T3), thyroxine (T4), albumin and total protein concentration in QEE treated groups. The expression level of IGF-1, FOXA-2, Stmn-2, SPP-1 was found significantly down-expressed. It is concluded that QEE treatment has the regenerative and hepatoprotective effect.
Subject(s)
Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Chenopodium quinoa , Liver Regeneration/drug effects , Liver/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Seeds , Animals , Antioxidants/isolation & purification , Biomarkers/blood , Carbon Tetrachloride , Cell Proliferation , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chenopodium quinoa/chemistry , Disease Models, Animal , Liver/metabolism , Liver/pathology , Plant Extracts/isolation & purification , Rats, Wistar , Seeds/chemistry , Silymarin/pharmacologyABSTRACT
Brain is a central and pivotal organ of human body containing the highest lipids content next to adipose tissue. It works as a monitor for the whole body and needs an adequate supply of energy to maintain its physiological activities. This high demand of energy in the brain is chiefly maintained by the lipids along with its reservoirs. Thus, the lipid metabolism is also an important for the proper development and function of the brain. Being a prominent part of the brain, lipids play a vast number of physiological activities within the brain starting from the structural development, impulse conduction, insulation, neurogenesis, synaptogenesis, myelin sheath formation and finally to act as the signaling molecules. Interestingly, lipids bilayer also maintains the structural integrity for the physiological functions of protein. Thus, in light to all of these activities, lipids and its metabolism can be attributed pivotal for brain health and its activities. Decisively, the impaired/altered metabolism of lipids and its intermediates puts forward a key step in the progression of different brain ailments including neurodegenerative, neurological and neuropsychiatry disorders. Depending on their associated underlying pathways, they serve as the potential biomarkers of these disorders and are considered as necessary diagnostic tools. The present review discusses the role and level of altered lipids metabolism in brain diseases including neurodegenerative diseases, neurological diseases, and neuropsychiatric diseases. Moreover, the possible mechanisms of altered level of lipids and their metabolites have also been discussed in detail.
Subject(s)
Brain Diseases/metabolism , Lipid Metabolism , Lipids/analysis , Biomarkers/analysis , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Brain Diseases/pathology , HumansABSTRACT
Gas sensors are important devices used to monitor the type and amount of gas present. Amperometric gas sensors - based on measuring the current upon an applied potential - have been progressing towards miniaturised designs that are smaller, lower cost, faster responding and more robust compared to commercially available sensors. In this work, a planar thin-film electrode device is employed for gas sensing with a thin layer of gel polymer electrolyte (GPE). The GPE consists of a room temperature ionic liquid (RTIL, with two different imidazolium cations and the tetrafluoroborate [BF4]- anion) mixed with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). The polymer acts as a scaffold, with the RTIL ions able to flow within the porous percolated channels, resulting in a highly robust gel with high conductivity. The chemical nature of the polymer allows thin-films (ca. 6 µm) to be evenly dropcast onto planar electrode devices, using minimal amounts of material. Remarkably, no significant effect of resistance was observed in the voltammetric response with such thin films. Oxygen (O2) and ammonia (NH3) gases were detected in the concentration ranges 1-20% O2 and 1-10 ppm NH3 in the two GPEs using both linear sweep voltammetry (LSV) and long-term chronoamperometry (LTCA). LTCA was the preferred detection method for both gases due to the steady-state current response compared to the sloping current response from LSV. The thin nature of the film gave fast response times for both gases - less than 10 seconds for O2 and ca. 40 seconds for NH3 - easily rivaling the commercially available porous electrode designs and allowing for continuous monitoring of gas concentrations. These materials appear to be highly promising candidates as gas detection electrolytes in miniaturised devices, with accurate and fast responses in both the cathodic and anodic potential regions.
ABSTRACT
Nature as an infinite treasure of chemotypes and pharmacophores will continue to play an imperative role in the drug discovery. Natural products (NPs) such as plant and fungal metabolites have emerged as leads in drug discovery during recent years due to their efficacy, safety and selectivity. The current review summarizes natural sources as well as pharmacological potential of hispolon which is a major constituent of traditional medicinal mushroom Phellinus linteus. The study aims to update the scientific community about recent developments of hispolon in the arena of natural drugs by providing insights into its present status in therapeutic pursuits. Hispolon, a polyphenol has been reported to possess anticancer, antidiabetic, antioxidant, antiviral and anti-inflammatory activities. It fights against cancer via induction of apoptosis, halting cell cycle and inhibition of metastasis by targeting various cellular signaling pathways including PI3K/Akt, MAPK and NF-κB. The current review proposes that hispolon provides a novel opportunity for pharmacological applications and its styrylpyrone carbon skeleton might serve as an attractive scaffold for drug development. However, future researches are recommended to assess bioavailability, toxicological limits, pharmacokinetic and pharmacodynamic profiles of hispolon, in order to establish its potential as a potent multi-targeted drug in the near future.
Subject(s)
Neoplasms , Polyphenols , Catechols , Humans , Phosphatidylinositol 3-Kinases , Polyphenols/pharmacologyABSTRACT
BACKGROUND: The spices based dietary interventions are in lime light among the scientific community owing to their promising therapeutic perspective. The bioactive components in spices can be used to exert various health promoting functions in human body such as prompting weight loss, inhibit diet-induced obesity, hypercholesterolemia, hyperglycemia, allergies and various other maladies. In current study extraction and in vitro characterization of coriander seed (CS), black cumin seed (BCS) and fenugreek seed (FS) polyphenols was conducted for further development of dietary intervention against lipid and glycemia related abnormalities in experimental Sprague Dowley rats fed with control and different spice powder supplemented diets. METHODS: Purposely, extraction of Coriander (CS), Black cumin (BCS) and Fenugreek seeds (FS) were carried out by using water and aqueous methanol (70:30 v/v). Afterwards, the resultant extracts were thoroughly investigated for their antioxidant potential through different indices like TPC, TFC, FRAP and ß Carotene Bleaching Assay and ABTS. Furthermore, HPLC quantification were also conducted with special reference to thymoquinone, disogenin, chlorogenic acid, caffeic acid and kaempferol alongside in vitro pancreatic lipase inhibitory activity estimation. Bio-evaluation trial was consisting of three modules i.e. study-I (normal diet), study-II (high cholesterol diet) and study-III (high sucrose diet). Furthermore, rats were sub-divided in five groups in each module on the basis of diet provision including T0 (control), T1 (Diet containing CS), T2 (Diet containing BCS), T3 (Diet containing FS) and T4 (Diet containing CSP + BCSP + FSP). At the beginning of trial, some rats were dissected to evaluate the baseline values whilst rest of the rats was killed at the termination (56th day). Feed and drink intakes were quantified on daily bases whereas, body weight was calculated weekly. Cholesterol level, serum low density lipoproteins (LDL), high density lipoproteins (HDL), triglycerides, glucose concentration and insulin level of collected sera was measured by standard procedures. RESULTS: The in vitro characterization showed better extraction of spices antioxidant through aqueous methanol as compared to water. Among the spices, Black cumin seed alone or in combination revealed highest antioxidant activity in T2 (BCS) followed by T4 (CS + BCS), T7 (CS + BCS + FS), T1 (CS), T6 (BCS + FS), T5 (CS + FS) and lowest in T3 (FS). Likewise, the HPLC characterization showed the presence of thymoquinone in BCS, Dosignienin FGS and chlorogenic acid, caffeic acid and kaempferol in the other treatments. Furthermore, all the treatments showed dose dependent inhibition in Pancreatic lipase activity and order of inhibition was BCS > CS + BCS > CS + BCS + FS > CS > BCS + FC > CS + FS > FS. The maximum feed intake, drink intake and weight gain was observed in T0 (control) trailed by T1, T2, T3 and T4 group in experimental study I, II and III, respectively. The resultant diet T4 enhanced the high density lipoprotein from T0 (58.58 ± 2.51) to 61.71 ± 1.62 (T4) in hypercholesterolemia rats whereas in hyperglycaemia rats the HDL was varied from 38.77 ± 1.2 to 40.02 ± 0.99 in T0 and T4, respectively. Similarly, T2 significantly lowered the low density lipoprotein from 62.53 ± 1.22 (T1) & 46.53 ± 0.99 to 54.88 ± 0.52 & 40.94 ± 1.99 (T2) in hypercholesteraemic and diabetic rats. Moreover, T4 treatment showed maximum reduction as 10.01 & 11.53% in respective studies. CONCLUSIONS: The diet prepared from the different combination of spices has been proven effective against Oxidative stress related physiological malfunctioning.
Subject(s)
Hypercholesterolemia/drug therapy , Hyperglycemia/drug therapy , Polyphenols/pharmacology , Spices/analysis , Animals , Caffeic Acids/pharmacology , Chlorogenic Acid/pharmacology , Cuminum/chemistry , Kaempferols/pharmacology , Lipid Metabolism/drug effects , Plant Extracts/chemistry , Powders , Rats , Rats, Sprague-Dawley , Seeds/chemistry , Trigonella/chemistryABSTRACT
This paper describes the existence and stability of the hepatitis B epidemic model with a fractional-order derivative in Atangana-Baleanu sense. Some new results are handled by using the Sumudu transform. The existence and uniqueness of the equilibrium solution are presented using the Banach fixed-point theorem. Moreover, sensitivity analysis complemented by simulations is performed to determine how changes in parameters affect the dynamical behavior of the system. The numerical simulations are carried out using a predictor-corrector scheme to demonstrate the obtained results.