ABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
Thermosets-polymeric materials that adopt a permanent shape upon curing-have a key role in the modern plastics and rubber industries, comprising about 20 per cent of polymeric materials manufactured today, with a worldwide annual production of about 65 million tons1,2. The high density of crosslinks that gives thermosets their useful properties (for example, chemical and thermal resistance and tensile strength) comes at the expense of degradability and recyclability. Here, using the industrial thermoset polydicyclopentadiene as a model system, we show that when a small number of cleavable bonds are selectively installed within the strands of thermosets using a comonomer additive in otherwise traditional curing workflows, the resulting materials can display the same mechanical properties as the native material, but they can undergo triggered, mild degradation to yield soluble, recyclable products of controlled size and functionality. By contrast, installation of cleavable crosslinks, even at much higher loadings, does not produce degradable materials. These findings reveal that optimization of the cleavable bond location can be used as a design principle to achieve controlled thermoset degradation. Moreover, we introduce a class of recyclable thermosets poised for rapid deployment.
ABSTRACT
Convenient strategies for the deconstruction and reprocessing of thermosets could improve the circularity of these materials, but most approaches developed to date do not involve established, high-performance engineering materials. Here, we show that bifunctional silyl ether, i.e., R'O-SiR2-OR'', (BSE)-based comonomers generate covalent adaptable network analogues of the industrial thermoset polydicyclopentadiene (pDCPD) through a novel BSE exchange process facilitated by the low-cost food-safe catalyst octanoic acid. Experimental studies and density functional theory calculations suggest an exchange mechanism involving silyl ester intermediates with formation rates that strongly depend on the Si-R2 substituents. As a result, pDCPD thermosets manufactured with BSE comonomers display temperature- and time-dependent stress relaxation as a function of their substituents. Moreover, bulk remolding of pDCPD thermosets is enabled for the first time. Altogether, this work presents a new approach toward the installation of exchangeable bonds into commercial thermosets and establishes acid-catalyzed BSE exchange as a versatile addition to the toolbox of dynamic covalent chemistry.
ABSTRACT
Many common polymers, especially vinyl polymers, are inherently difficult to chemically recycle and are environmentally persistent. The introduction of low levels of cleavable comonomer additives into existing vinyl polymerization processes could facilitate the production of chemically deconstructable and recyclable variants with otherwise equivalent properties. Here, we report thionolactones that serve as cleavable comonomer additives for the chemical deconstruction and recycling of vinyl polymers prepared through free radical polymerization, using polystyrene (PS) as a model example. Deconstructable PS of different molar masses (â¼20-300 kDa) bearing varied amounts of statistically incorporated thioester backbone linkages (2.5-55 mol %) can be selectively depolymerized to yield well-defined thiol-terminated fragments (<10 kDa) that are suitable for oxidative repolymerization to generate recycled PS of nearly identical molar mass to the parent material, in good yields (80-95%). A theoretical model is provided to generalize this molar mass memory effect. Notably, the thermomechanical properties of deconstructable PS bearing 2.5 mol % of cleavable linkages and its recycled product are similar to those of virgin PS. The additives were also shown to be effective for deconstruction of a cross-linked styrenic copolymer and deconstruction and repolymerization of a polyacrylate, suggesting that cleavable comonomers may offer a general approach toward circularity of many vinyl (co)polymers.
Subject(s)
Polystyrenes , Vinyl Compounds , Molecular Weight , Polymerization , Polymers/chemistry , Vinyl Compounds/chemistryABSTRACT
Thermoset toughness and deconstructability are often opposing features; simultaneously improving both without sacrificing other mechanical properties (e.g., stiffness and tensile strength) is difficult, but, if achieved, could enhance the usage lifetime and end-of-life options for these materials. Here, a strategy that addresses this challenge in the context of photopolymer resins commonly used for 3D printing of glassy, acrylic thermosets is introduced. It is shown that incorporating bis-acrylate "transferinkers," which are cross-linkers capable of undergoing degenerative chain transfer and new strand growth, as additives (5-25 mol%) into homemade or commercially available photopolymer resins leads to photopolymer thermosets with substantially improved tensile toughness and triggered chemical deconstructability with minimal impacts on Young's moduli, tensile strengths, and glass transition temperatures. These properties result from a transferinker-driven topological transition in network structure from the densely cross-linked long, heterogeneous primary strands of traditional photopolymer networks to more uniform, star-like networks with few dangling ends; the latter structure more effectively bear stress yet is also more easily depercolated via solvolysis. Thus, transferinkers represent a simple and effective strategy for improving the mechanical properties of photopolymer thermosets and providing a mechanism for their triggered deconstructability.
ABSTRACT
Graft copolymers offer a versatile platform for the design of self-assembling materials; however, simple strategies for precisely and independently controlling the thermomechanical and morphological properties of graft copolymers remain elusive. Here, using a library of 92 polynorbornene-graft-polydimethylsiloxane (PDMS) copolymers, we discover a versatile backbone-pendant sequence-control strategy that addresses this challenge. Small structural variations of pendant groups, e.g., cyclohexyl versus n-hexyl, of small-molecule comonomers have dramatic impacts on order-to-disorder transitions, glass transitions, mechanical properties, and morphologies of statistical and block silicone-based graft copolymers, providing an exceptionally broad palette of designable materials properties. For example, statistical graft copolymers with high PDMS volume fractions yielded unbridged body-centered cubic morphologies that behaved as soft plastic crystals. By contrast, lamellae-forming graft copolymers provided robust, yet reprocessable silicone thermoplastics (TPs) with transition temperatures spanning over 160 °C and elastic moduli as high as 150 MPa despite being both unentangled and un-cross-linked. Altogether, this study reveals a new pendant-group-mediated self-assembly strategy that simplifies graft copolymer synthesis and enables access to a diverse family of silicone-based materials, setting the stage for the broader development of self-assembling materials with tailored performance specifications.
ABSTRACT
While Si-containing polymers can often be deconstructed using chemical triggers such as fluoride, acids, and bases, they are resistant to cleavage by mild reagents such as biological nucleophiles, thus limiting their end-of-life options and potential environmental degradability. Here, using ring-opening metathesis polymerization, we synthesize terpolymers of (1) a "functional" monomer (e.g., a polyethylene glycol macromonomer or dicyclopentadiene); (2) a monomer containing an electrophilic pentafluorophenyl (PFP) substituent; and (3) a cleavable monomer based on a bifunctional silyl ether . Exposing these polymers to thiols under basic conditions triggers a cascade of nucleophilic aromatic substitution (SNAr) at the PFP groups, which liberates fluoride ions, followed by cleavage of the backbone Si-O bonds, inducing polymer backbone deconstruction. This method is shown to be effective for deconstruction of polyethylene glycol (PEG) based graft terpolymers in organic or aqueous conditions as well as polydicyclopentadiene (pDCPD) thermosets, significantly expanding upon the versatility of bifunctional silyl ether based functional polymers.
ABSTRACT
Thermosets present sustainability challenges that could potentially be addressed through the design of deconstructable variants with tunable properties; however, the combinatorial space of possible thermoset molecular building blocks (e.g., monomers, cross-linkers, and additives) and manufacturing conditions is vast, and predictive knowledge for how combinations of these molecular components translate to bulk thermoset properties is lacking. Data science could overcome these problems, but computational methods are difficult to apply to multicomponent, amorphous, statistical copolymer materials for which little data exist. Here, leveraging a data set with 101 examples, we introduce a closed-loop experimental, machine learning (ML), and virtual screening strategy to enable predictions of the glass transition temperature (Tg) of polydicyclopentadiene (pDCPD) thermosets containing cleavable bifunctional silyl ether (BSE) comonomers and/or cross-linkers with varied compositions and loadings. Molecular features and formulation variables are used as model inputs, and uncertainty is quantified through model ensembling, which together with heavy regularization helps to avoid overfitting and ultimately achieves predictions within <15 °C for thermosets with compositionally diverse BSEs. This work offers a path to predicting the properties of thermosets based on their molecular building blocks, which may accelerate the discovery of promising plastics, rubbers, and composites with improved functionality and controlled deconstructability.
ABSTRACT
The synthesis of novel polysilylethers via entropy-driven ring-opening metathesis polymerization (ED-ROMP) of cyclic bifunctional silyl ether-based monomers is reported. These polymers display good thermal stability and ultra-low Tg (-88 °C). Moreover, they are rapidly deconstructable via the cleavage of the silicon-oxygen linkages with acid or fluoride triggers, and they were partially depolymerizable by the addition of exogenous metathesis catalyst. Analysis of the deconstructed polymer products provided insight into the polymer microstructure, showing that the ED-ROMP process was regiorandom. Altogether, this work offers a new class of deconstructable polymers with a range of potential applications.