Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Anal Bioanal Chem ; 404(8): 2151-62, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22885974

ABSTRACT

Synchrotron-based X-ray absorption spectroscopy has been used to determine the chemical speciation of Np sorbed on Opalinus Clay (OPA, Mont Terri, Switzerland), a natural argillaceous rock revealing a micro-scale heterogeneity. Different sorption and diffusion samples with Np(V) were prepared for spatially resolved molecular-level investigations. Thin sections of OPA contacted with Np(V) solution under aerobic and anaerobic conditions as well as a diffusion sample were analysed spatially resolved. Micro-X-ray fluorescence (µ-XRF) mapping has been used to determine the elemental distributions of Np, Fe and Ca. Regions of high Np concentration were subsequently investigated by micro-X-ray absorption fine structure spectroscopy to determine the oxidation state of Np. Further, micro-X-ray diffraction (µ-XRD) was employed to gain knowledge about reactive crystalline mineral phases in the vicinity of Np enrichments. One thin section was also analysed by electron microprobe to determine the elemental distributions of the lighter elements (especially Si and Al), which represent the main elements of OPA. The results show that in most samples, Np spots with considerable amounts of Np(IV) could be found even when the experiments were carried out in air. In some cases, almost pure Np(IV) L(III)-edge X-ray absorption near-edge structure spectra were recorded. In the case of the anaerobic sample, the µ-XRF mapping showed a clear correlation between Np and Fe, indicating that the reduction of Np(V) is caused by an iron(II)-containing mineral which could be identified by µ-XRD as pyrite. These spatially resolved investigations were complemented by extended X-ray absorption fine structure measurements of powder samples from batch experiments under aerobic and anaerobic conditions to determine the structural parameters of the near-neighbour environment of sorbed Np.

2.
Chem Commun (Camb) ; (44): 5533-5, 2005 Nov 28.
Article in English | MEDLINE | ID: mdl-16358053

ABSTRACT

Silicatein immobilised on self-assembled polymer layers using a histidine-tag chelating anchor group retains its hydrolytical activity for the formation of biosilica, and catalyses the formation of layered arrangements of biotitania and biozirconia.


Subject(s)
Cathepsins/chemistry , Silicon/chemistry , Titanium/chemistry , Zirconium/chemistry , Catalysis , Enzymes, Immobilized/chemistry , Ligands , Microscopy, Electron, Scanning , Nitrilotriacetic Acid/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Plasmon Resonance
3.
Chem Commun (Camb) ; (24): 2848-9, 2004 Dec 21.
Article in English | MEDLINE | ID: mdl-15599437

ABSTRACT

Surface bound silicatein retains its biocatalytic activity, which was demonstrated by monitoring the immobilisation of silicatein using a histidine-tag chelating anchor and the subsequent biosilicification of SiO(2) on surfaces by surface plasmon resonance spectroscopy, atomic force microscopy and scanning electron microscopy.


Subject(s)
Cathepsins/metabolism , Histidine/metabolism , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism , Catalysis , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Molecular Structure , Surface Plasmon Resonance
4.
Science ; 345(6198): 786-91, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25124433

ABSTRACT

Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

5.
Science ; 314(5806): 1716-9, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170290

ABSTRACT

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.

6.
Science ; 314(5806): 1724-8, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170292

ABSTRACT

Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.


Subject(s)
Carbon Isotopes/analysis , Deuterium/analysis , Isotopes/analysis , Meteoroids , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Hydrogen/analysis , Neon/analysis , Noble Gases/analysis , Spacecraft
7.
Science ; 314(5806): 1731-5, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170294

ABSTRACT

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

SELECTION OF CITATIONS
SEARCH DETAIL