Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Cell ; 151(1): 25-40, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23021213

ABSTRACT

Astrocytes release glutamate upon activation of various GPCRs to exert important roles in synaptic functions. However, the molecular mechanism of release has been controversial. Here, we report two kinetically distinct modes of nonvesicular, channel-mediated glutamate release. The fast mode requires activation of G(αi), dissociation of G(ßγ), and subsequent opening of glutamate-permeable, two-pore domain potassium channel TREK-1 through direct interaction between G(ßγ) and N terminus of TREK-1. The slow mode is Ca(2+) dependent and requires G(αq) activation and opening of glutamate-permeable, Ca(2+)-activated anion channel Best1. Ultrastructural analyses demonstrate that TREK-1 is preferentially localized at cell body and processes, whereas Best1 is mostly found in microdomains of astrocytes near synapses. Diffusion modeling predicts that the fast mode can target neuronal mGluR with peak glutamate concentration of 100 µM, whereas slow mode targets neuronal NMDA receptors at around 1 µM. Our results reveal two distinct sources of astrocytic glutamate that can differentially influence neighboring neurons.


Subject(s)
Astrocytes/metabolism , Eye Proteins/metabolism , Glutamic Acid/metabolism , Ion Channels/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Bestrophins , Cells, Cultured , Exocytosis , Eye Proteins/genetics , HEK293 Cells , Humans , Ion Channels/genetics , Mice , Mice, Knockout , Molecular Sequence Data , Potassium Channels, Tandem Pore Domain/genetics , Sequence Alignment , Signal Transduction
2.
Korean J Physiol Pharmacol ; 27(4): 417-426, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37394239

ABSTRACT

The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP-1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.

3.
Glia ; 70(10): 1902-1926, 2022 10.
Article in English | MEDLINE | ID: mdl-35670184

ABSTRACT

Cathelicidin-related antimicrobial peptide (CRAMP) is an effector molecule of the innate immune system with direct antimicrobial and immunomodulatory activities; however, its role in neuroinflammatory responses and related diseases is not clearly understood. In particular, the expression of CRAMP and its functional role has not been previously studied in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Here, we investigated the role of CRAMP in neuroinflammation, using an EAE mouse model of MS and postmortem patient tissues. We found that the CRAMP expression was increased in the spinal cords of EAE-induced mice. Immunofluorescence analysis revealed that CRAMP is mainly induced in reactive astrocytes in the inflamed spinal cord of EAE mice. A similar pattern of the LL-37 (human CRAMP) expression was observed in the brain and spinal cord tissues of patients with MS. An intrathecal injection of the CRAMP peptide in EAE mice accelerated the onset of symptoms and increased disease severity with augmented expression of inflammatory mediators, glial activation, infiltration of inflammatory cells, and demyelination. In addition, shRNA-mediated knockdown of Cramp in the spinal cord resulted in a milder disease course with less inflammation in EAE mice. We identified FPR2 on microglia as a CRAMP receptor and demonstrated that CRAMP potentiates IFN-γ-induced microglial activation via the STAT3 pathway. Taken together, our findings suggest that CRAMP is a novel mediator of astrocyte-microglia interactions in neuroinflammatory conditions such as EAE. Thus, CRAMP could be exploited as a biomarker or therapeutic target for the diagnosis or treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Antimicrobial Cationic Peptides , Antimicrobial Peptides , Astrocytes/metabolism , Communication , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Multiple Sclerosis/metabolism , Neuroinflammatory Diseases , Spinal Cord/metabolism , Cathelicidins
4.
Mol Psychiatry ; 26(9): 5087-5096, 2021 09.
Article in English | MEDLINE | ID: mdl-33483691

ABSTRACT

The fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


Subject(s)
Depression/metabolism , NF-kappa B , Receptors, Glucocorticoid , Animals , Brain/metabolism , Hypothalamo-Hypophyseal System/metabolism , Mice , NF-kappa B/metabolism , Pituitary-Adrenal System/metabolism , Receptors, Glucocorticoid/metabolism
5.
EMBO Rep ; 21(2): e48097, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31782602

ABSTRACT

TMEM16A, a Ca2+ -activated Cl- channel, is known to modulate the excitability of various types of cells; however, its function in central neurons is largely unknown. Here, we show the specific expression of TMEM16A in the medial habenula (mHb) via RNAscope in situ hybridization, immunohistochemistry, and electrophysiology. When TMEM16A is ablated in the mHb cholinergic neurons (TMEM16A cKO mice), the slope of after-hyperpolarization of spontaneous action potentials decreases and the firing frequency is reduced. Reduced mHb activity also decreases the activity of the interpeduncular nucleus (IPN). Moreover, TMEM16A cKO mice display anxiogenic behaviors and deficits in social interaction without despair-like phenotypes or cognitive dysfunctions. Finally, chemogenetic inhibition of mHb cholinergic neurons using the DREADD (Designer Receptors Exclusively Activated by Designer Drugs) approach reveals similar behavioral phenotypes to those of TMEM16A cKO mice. We conclude that TMEM16A plays a key role in anxiety-related behaviors regulated by mHb cholinergic neurons and could be a potential therapeutic target against anxiety-related disorders.


Subject(s)
Habenula , Animals , Anxiety/genetics , Cholinergic Neurons , Mice , Mice, Inbred C57BL
6.
Brain ; 144(2): 528-552, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33382892

ABSTRACT

The complement system is part of the innate immune system that comprises several small proteins activated by sequential cleavages. The majority of these complement components, such as components 3a (C3a) and C5a, are chemotactic and pro-inflammatory. However, in this study, we revealed an inhibitory role of complement component 8 gamma (C8G) in neuroinflammation. In patients with Alzheimer's disease, who exhibit strong neuroinflammation, we found higher C8G levels in brain tissue, CSF, and plasma. Our novel findings also showed that the expression level of C8G increases in the inflamed mouse brain, and that C8G is mainly localized to brain astrocytes. Experiments using recombinant C8G protein and shRNA-mediated knockdown showed that C8G inhibits glial hyperactivation, neuroinflammation, and cognitive decline in acute and chronic animal models of Alzheimer's disease. Additionally, we identified sphingosine-1-phosphate receptor 2 (S1PR2) as a novel interaction protein of C8G and demonstrated that astrocyte-derived C8G interacts with S1PR2 to antagonize the pro-inflammatory action of S1P in microglia. Taken together, our results reveal the previously unrecognized role of C8G as a neuroinflammation inhibitor. Our findings pave the way towards therapeutic containment of neuroinflammation in Alzheimer's disease and related neurological diseases.


Subject(s)
Alzheimer Disease/complications , Complement C8/immunology , Encephalitis/immunology , Alzheimer Disease/immunology , Animals , Astrocytes/immunology , Cells, Cultured , Complement C8/cerebrospinal fluid , Male , Mice, Inbred C57BL , Microglia/immunology , Protein Subunits/immunology , Sphingosine-1-Phosphate Receptors/immunology
7.
Proc Natl Acad Sci U S A ; 116(25): 12494-12499, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31147466

ABSTRACT

Neural stem cells (NSCs) are primary progenitor cells in the early developmental stage in the brain that initiate a diverse lineage of differentiated neurons and glia. Radial glial cells (RGCs), a type of neural stem cell in the ventricular zone, are essential for nurturing and delivering new immature neurons to the appropriate cortical target layers. Here we report that Anoctamin 1 (ANO1)/TMEM16A, a Ca2+-activated chloride channel, mediates the Ca2+-dependent process extension of RGCs. ANO1 is highly expressed and functionally active in RGCs of the mouse embryonic ventricular zone. Knockdown of ANO1 suppresses RGC process extension and protrusions, whereas ANO1 overexpression stimulates process extension. Among various trophic factors, brain-derived neurotrophic factor (BDNF) activates ANO1, which is required for BDNF-induced process extension in RGCs. More importantly, Ano1-deficient mice exhibited disrupted cortical layers and reduced cortical thickness. We thus conclude that the regulation of RGC process extension by ANO1 contributes to the normal formation of mouse embryonic brain.


Subject(s)
Anoctamin-1/physiology , Brain/cytology , Brain/embryology , Neuroglia/cytology , Animals , Anoctamin-1/genetics , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Chlorides/metabolism , Down-Regulation , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroglia/metabolism , Up-Regulation
8.
Cell Biochem Funct ; 38(2): 167-175, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31782179

ABSTRACT

TREK-1 (TWIK-related K+ channel), a member of the two-pore domain K+ (K2P) channel family, is highly expressed in astrocytes, where it plays a key role in glutamate release and passive conductance. In addition, TREK-1 is induced to protect neurons under pathological conditions such as hypoxia. However, the upstream regulation of TREK-1 remains poorly understood. In this study, we found that AEG-1 (astrocyte elevated gene-1) regulates the expression of astrocytic TREK-1 under hypoxic conditions. Upregulation of AEG-1 increased expression of TREK-1 in astrocytes, and knockdown of AEG-1 dramatically decreased the mRNA and protein levels of TREK-1, which were restored by expression of shRNA-insensitive AEG-1. In addition, expression of TREK-1 was not regulated in the absence of AEG-1, even when HIF1α was present. Together, these results suggest that AEG-1 acts as a major upstream regulator of TREK-1 channels in astrocytes under hypoxia. SIGNIFICANCE OF THE STUDY: Previous studies have reported that hypoxia increases the expression of astrocytic TREK-1 and that increased TREK-1 expression protects neuronal cells from apoptosis. However, its cellular mechanism is not clear. In this study we first showed that AEG-1 is a major mediator of hypoxic-regulated TREK-1 expression in normal astrocytes independently of HIF-1α.


Subject(s)
Astrocytes/metabolism , Cell Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Membrane Proteins/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , RNA-Binding Proteins/metabolism , Animals , Apoptosis , Astrocytes/cytology , Electroporation , Glutamic Acid/metabolism , HEK293 Cells , Humans , Infarction, Middle Cerebral Artery/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Neurons/metabolism , RNA, Messenger/metabolism
9.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348878

ABSTRACT

Astrocytes, the most abundant cell type in the brain, are non-excitable cells and play critical roles in brain function. Mature astrocytes typically exhibit a linear current-voltage relationship termed passive conductance, which is believed to enable astrocytes to maintain potassium homeostasis in the brain. We previously demonstrated that TWIK-1/TREK-1 heterodimeric channels mainly contribute to astrocytic passive conductance. However, the molecular identity of astrocytic passive conductance is still controversial and needs to be elucidated. Here, we report that spadin, an inhibitor of TREK-1, can dramatically reduce astrocytic passive conductance in brain slices. A series of gene silencing experiments demonstrated that spadin-sensitive currents are mediated by TWIK-1/TREK-1 heterodimeric channels in cultured astrocytes and hippocampal astrocytes from brain slices. Our study clearly showed that TWIK-1/TREK-1-heterodimeric channels can act as the main molecular machinery of astrocytic passive conductance, and suggested that spadin can be used as a specific inhibitor to control astrocytic passive conductance.


Subject(s)
Astrocytes/physiology , Brain/physiology , Gene Expression Regulation/drug effects , Peptides/pharmacology , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Protein Multimerization , Animals , Astrocytes/cytology , Astrocytes/drug effects , Brain/cytology , Brain/drug effects , Female , Male , Mice , Mice, Inbred C57BL
10.
Biochem Biophys Res Commun ; 514(1): 344-350, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31036321

ABSTRACT

The bestrophin family comprises well-known Ca2+-activated chloride channels (CaCC) that are expressed in a variety tissues including the brain, eye, gastrointestinal tract, and muscle tissues. Among the family members, bestrophin-1 (BEST1) is known to exist mainly in retinal pigment epithelium cells, but we recently reported that BEST1 mediates Ca2+-activated Cl- currents in hippocampal astrocytes. Despite its critical roles in physiological processes, including tonic γ-aminobutyric acid release and glutamate transport, the mechanisms that regulate BEST1 are poorly understood. In this study, we identified NEDD4L (NEDD4-2), an E3 ubiquitin ligase, as a binding partner of BEST1. A series of deletion constructs revealed that the WW3-4 domains of NEDD4L were important for interaction with BEST1. We observed that BEST1 underwent ubiquitin-dependent proteolysis and found that the conserved lysine370 residue in the C-terminus of BEST1 was important for its ubiquitination. Finally, we demonstrated that NEDD4L inhibited whole cell currents mediated by BEST1 but not by the BEST1(K370R) mutant. Collectively, our data demonstrated that NEDD4L played a critical role in regulating the surface expression of BEST1 by promoting its internalization and degradation.


Subject(s)
Bestrophins/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism , Animals , Bestrophins/genetics , HEK293 Cells , Humans , Lysine/metabolism , Mice , Nedd4 Ubiquitin Protein Ligases/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Protein Interaction Domains and Motifs , Ubiquitination , Ubiquitins/metabolism
11.
Int J Syst Evol Microbiol ; 69(6): 1628-1633, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30938667

ABSTRACT

A Gram-stain-negative, yellow-pigmented, non-motile, non-spore-forming, aerobic and rod-shaped bacterial strain, designated 17S1E7T, was isolated from the Han River, Republic of Korea, and characterized by polyphasic taxonomy analyses. Strain 17S1E7T grew optimally on tryptic soy agar at 37 °C and pH 7.0 in the absence of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain 17S1E7T belonged to the genus Chryseobacterium and was most closely related to Chryseobacterium culicis DSM 23031T (98.54 %). The average nucleotide identity value of strain 17S1E7T was 91.1 % to Chryseobacterium culicis DSM 23031T, which was lower than the cut-off of 95-96 %. The DNA G+C content of strain 17S1E7T was 37.4 mol%. Flexirubin-type pigments were produced. The predominant respiratory quinone was menaquinone 6. The major fatty acids of strain 17S1E7T were iso-C15 : 0, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl), iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c). The predominant polar lipid was phosphatidylethanolamine. Based on polyphasic taxonomy data, strain 17S1E7T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium aureum sp. nov. is proposed. The type strain is 17S1E7T (=KACC 19920T=JCM 33165T).


Subject(s)
Chryseobacterium/classification , Phylogeny , Rivers/microbiology , Bacterial Typing Techniques , Base Composition , Chryseobacterium/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phosphatidylethanolamines/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
12.
Int J Mol Sci ; 20(23)2019 Nov 24.
Article in English | MEDLINE | ID: mdl-31771312

ABSTRACT

TWIK-related potassium channel-1 (TREK-1) is broadly expressed in the brain and involved in diverse brain diseases, such as seizures, ischemia, and depression. However, the cell type-specific roles of TREK-1 in the brain are largely unknown. Here, we generated a Cre-dependent TREK-1 knockdown (Cd-TREK-1 KD) transgenic mouse containing a gene cassette for Cre-dependent TREK-1 short hairpin ribonucleic acid to regulate the cell type-specific TREK-1 expression. We confirmed the knockdown of TREK-1 by injecting adeno-associated virus (AAV) expressing Cre into the hippocampus of the mice. To study the role of hippocampal neuronal TREK-1 in a lipopolysaccharide (LPS)-induced depression model, we injected AAV-hSyn-BFP (nCTL group) or AAV-hSyn-BFP-Cre (nCre group) virus into the hippocampus of Cd-TREK-1 KD mice. Interestingly, the immobility in the tail suspension test after LPS treatment did not change in the nCre group. Additionally, some neurotrophic factors (BDNF, VEGF, and IGF-1) significantly increased more in the nCre group compared to the nCTL group after LPS treatment, but there was no difference in the expression of their receptors. Therefore, our data suggest that TREK-1 in the hippocampal neurons has antidepressant effects, and that Cd-TREK-1 KD mice are a valuable tool to reveal the cell type-specific roles of TREK-1 in the brain.


Subject(s)
Depressive Disorder/etiology , Hippocampus/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Animals , Behavior, Animal/drug effects , Corticosterone/blood , Cytokines/genetics , Cytokines/metabolism , Dentate Gyrus/metabolism , Dependovirus/genetics , Depressive Disorder/metabolism , Disease Models, Animal , Genetic Vectors/genetics , Genetic Vectors/metabolism , Lipopolysaccharides/toxicity , Mice , Mice, Transgenic , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
13.
J Neurosci ; 37(11): 2878-2894, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28193696

ABSTRACT

Orosomucoid (ORM) is an acute-phase protein that belongs to the immunocalin subfamily, a group of small-molecule-binding proteins with immunomodulatory functions. Little is known about the role of ORM proteins in the CNS. The aim of the present study was to investigate the brain expression of ORM and its role in neuroinflammation. Expression of Orm2, but not Orm1 or Orm3, was highly induced in the mouse brain after systemic injection of lipopolysaccharide (LPS). Plasma levels of ORM2 were also significantly higher in patients with cognitive impairment than in normal subjects. RT-PCR, Western blot, and immunofluorescence analyses revealed that astrocytes are the major cellular sources of ORM2 in the inflamed mouse brain. Recombinant ORM2 protein treatment decreased microglial production of proinflammatory mediators and reduced microglia-mediated neurotoxicity in vitro LPS-induced microglial activation, proinflammatory cytokines in hippocampus, and neuroinflammation-associated cognitive deficits also decreased as a result of intracerebroventricular injection of recombinant ORM2 protein in vivo Moreover, lentiviral shRNA-mediated Orm2 knockdown enhanced LPS-induced proinflammatory cytokine gene expression and microglial activation in the hippocampus. Mechanistically, ORM2 inhibited C-C chemokine ligand 4 (CCL4)-induced microglial migration and activation by blocking the interaction of CCL4 with C-C chemokine receptor type 5. Together, the results from our cultured glial cells, mouse neuroinflammation model, and patient studies suggest that ORM2 is a novel mediator of astrocyte-microglial interaction. We also report that ORM2 exerts anti-inflammatory effects by modulating microglial activation and migration during brain inflammation. ORM2 can be exploited therapeutically for the treatment of neuroinflammatory diseases.SIGNIFICANCE STATEMENT Neural cell interactions are important for brain physiology and pathology. Particularly, the interaction between non-neuronal cells plays a central role in regulating brain inflammation, which is closely linked to many brain disorders. Here, we newly identified orosomucoid-2 (ORM2) as an endogenous protein that mediates such non-neuronal glial cell interactions. Based on the critical role of astrocyte-derived ORM2 in modulating microglia-mediated neuroinflammation, ORM2 can be exploited for the diagnosis, prevention, or treatment of devastating brain disorders that have a strong neuroinflammatory component, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis.


Subject(s)
Brain/immunology , Brain/pathology , Encephalitis/immunology , Immunologic Factors/immunology , Microglia/immunology , Orosomucoid/immunology , Animals , Cytokines/immunology , Encephalitis/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/pathology
14.
Circulation ; 135(23): 2288-2298, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28356442

ABSTRACT

BACKGROUND: Bone morphogenetic protein (BMP) signaling has multiple roles in the development and function of the blood vessels. In humans, mutations in BMP receptor type 2 (BMPR2), a key component of BMP signaling, have been identified in the majority of patients with familial pulmonary arterial hypertension (PAH). However, only a small subset of individuals with BMPR2 mutation develops PAH, suggesting that additional modifiers of BMPR2 function play an important role in the onset and progression of PAH. METHODS: We used a combination of studies in zebrafish embryos and genetically engineered mice lacking endothelial expression of Vegfr3 to determine the interaction between vascular endothelial growth factor receptor 3 (VEGFR3) and BMPR2. Additional in vitro studies were performed by using human endothelial cells, including primary lung endothelial cells from subjects with PAH. RESULTS: Attenuation of Vegfr3 in zebrafish embryos abrogated Bmp2b-induced ectopic angiogenesis. Endothelial cells with disrupted VEGFR3 expression failed to respond to exogenous BMP stimulation. Mechanistically, VEGFR3 is physically associated with BMPR2 and facilitates ligand-induced endocytosis of BMPR2 to promote phosphorylation of SMADs and transcription of ID genes. Conditional, endothelial-specific deletion of Vegfr3 in mice resulted in impaired BMP signaling responses, and significantly worsened hypoxia-induced pulmonary hypertension. Consistent with these data, we found significant decrease in VEGFR3 expression in pulmonary arterial endothelial cells from human PAH subjects, and reconstitution of VEGFR3 expression in PAH pulmonary arterial endothelial cells restored BMP signaling responses. CONCLUSIONS: Our findings identify VEGFR3 as a key regulator of endothelial BMPR2 signaling and a potential determinant of PAH penetrance in humans.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/biosynthesis , Endothelium, Vascular/metabolism , Hypertension, Pulmonary/metabolism , Vascular Endothelial Growth Factor Receptor-3/biosynthesis , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Cells, Cultured , Endothelium, Vascular/pathology , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vascular Endothelial Growth Factor Receptor-3/genetics , Zebrafish
15.
Int J Mol Sci ; 19(1)2017 Dec 24.
Article in English | MEDLINE | ID: mdl-29295556

ABSTRACT

Two-pore domain K⁺ (K2P) channels play essential roles in regulating resting membrane potential and cellular excitability. Although TWIK-1 (TWIK-tandem of pore domains in a weak inward rectifying K⁺ channel) was the first identified member of the K2P channel family, it is only in recent years that the physiological roles of TWIK-1 have been studied in depth. A series of reports suggest that TWIK-1 may underlie diverse functions, such as intrinsic excitability of neurons, astrocytic passive conductance, and astrocytic glutamate release, as a homodimer or heterodimer with other K2P isotypes. Here, we summarize expression patterns and newly identified functions of TWIK-1 in the brain.


Subject(s)
Brain/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Protein Multimerization , Animals , Astrocytes/metabolism , Brain Diseases/metabolism , Brain Diseases/pathology , Humans , Neurons/metabolism
16.
Biochem Biophys Res Commun ; 475(2): 216-22, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27207835

ABSTRACT

Anoctamin-1 (ANO1) is a Ca(2+)-activated chloride channel (CaCC) that plays important physiological roles in normal and cancerous tissues. However, the plasma membrane trafficking mechanisms of ANO1 remain poorly characterized. In yeast two-hybrid screening experiments, we observed direct interactions of ANO1 with ß-COP, which is a subunit of Coat Protein Complex I (COPI). This interaction was then confirmed using several in vitro and in vivo binding assays. Moreover, the cotransfection of ß-COP with ANO1 into HEK293T cells led to decreased the surface expression and the channel activity of ANO1. Accordingly, endogenous ANO1 was associated with ß-COP in U251 glioblastoma cells, and silencing of ß-COP enhanced surface expression and whole-cell currents of ANO1 in these cells. Taken together, these data suggest that ß-COP negatively regulates ANO1 surface expression.


Subject(s)
Chloride Channels/metabolism , Coatomer Protein/metabolism , Neoplasm Proteins/metabolism , Protein Interaction Maps , Anoctamin-1 , Biological Transport , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Coatomer Protein/analysis , Glioblastoma/metabolism , HEK293 Cells , Humans
17.
Traffic ; 13(9): 1218-33, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22607032

ABSTRACT

Here, we have identified a retrograde transport pathway of caveolin-2 (cav-2) for its regulatory function in the nucleus. Confocal microscopy analysis, photoactivation experiments and subcellular fractionation revealed that cav-2 localized in the Golgi was transported to the inner nuclear membrane (INM) in response to insulin. Exogenous caveolin-1 (cav-1) and P132L-cav-1 expression did not affect the Golgi localization and insulin-induced INM targeting of cav-2. Cav-2(DKV) mutant in the endoplasmic reticulum (ER) was unable to translocate to the INM in response to insulin. The GTP-bound form of Rab6 promoted, but Rab6 siRNA and the GDP-bound form of Rab6 abrogated, retrograde trafficking of cav-2 from the Golgi to ER. Colchicine or nocodazole treatment abolished insulin-induced INM targeting of cav-2. Knock down of gp210 inhibited insulin-induced import of cav-2 from ER/outer nuclear membrane (ONM) to the INM. The INM-targeted cav-2 prevented heterochromatinization and promoted transcriptional activation of Elk-1 and signal transducer and activator of transcription 3 (STAT3). The results provide molecular mechanisms for insulin-induced INM translocation of cav-2 initiated (i) by Golgi-to-ER retrograde trafficking of cav-2 via microtubule-based Rab6-GTP-dependent transport and subsequently processed (ii) by gp210-mediated import of cav-2 from ER/ONM to INM.


Subject(s)
Caveolin 2/metabolism , Insulin/pharmacology , Nuclear Envelope/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Caveolin 1/genetics , Caveolin 1/metabolism , Caveolin 2/genetics , Colchicine/pharmacology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Nocodazole/pharmacology , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Point Mutation , Protein Transport/drug effects , RNA, Small Interfering , Rats , STAT3 Transcription Factor/metabolism , Transcriptional Activation , Tubulin Modulators/pharmacology , ets-Domain Protein Elk-1/metabolism , rab GTP-Binding Proteins/genetics
18.
Biochem Biophys Res Commun ; 454(3): 459-64, 2014 11 21.
Article in English | MEDLINE | ID: mdl-25450684

ABSTRACT

NELL2 is an abundant glycoprotein containing EGF-like domain in the neural tissues where it has multiple physiological functions by interacting with protein kinase C (PKC). There are two different splicing variant forms of NELL2 identified so far. One is secreted NELL2 (sNELL2) which is a neuron-specific variant and the other is cytosolic NELL2 (cNELL2) which is non-secreted splicing variant of NELL2. Although cNELL2 structure was well characterized, the expression pattern or the cellular function of cNELL2 is not fully determined. In this study, we found that cNELL2 specifically interacts with PKCß isotypes and inhibits PKCß1 through direct binding to the N-terminal pseudosubstrate domain of PKCß1. Here, we also demonstrate that cNELL2 is predominantly expressed and has inhibitory effects on the PKC downstream signaling pathways in astrocytes thereby establishing cNELL2 as an endogenous inhibitor of PKCß1 in glia.


Subject(s)
Astrocytes/metabolism , Cytosol/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C beta/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetulus , HEK293 Cells , Humans , Mice, Inbred C57BL , Nerve Tissue Proteins/analysis , Protein Interaction Domains and Motifs , Protein Interaction Maps , Protein Isoforms/analysis , Protein Isoforms/metabolism , Protein Kinase C beta/analysis , Signal Transduction
19.
Biochem Biophys Res Commun ; 454(1): 228-33, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25450385

ABSTRACT

Copine1 (CPNE1) has tandem C2 domains and an A domain and is known as a calcium-dependent membrane-binding protein that regulates signal transduction and membrane trafficking. We previously demonstrated that CPNE1 directly induces neuronal differentiation via Akt phosphorylation in the hippocampal progenitor cell line, HiB5. To determine which region of CPNE1 is related to HiB5 cell neurite outgrowth, we constructed several mutants. Our results show that over-expression of each C2 domain of CPNE1 increased neurite outgrowth and expression of the neuronal marker protein neurofilament (NF). Even though protein localization of the calcium binding-deficient mutant of CPNE1 was not affected by ionomycin, this mutant increased neurite outgrowth and NF expression in HiB5 cells. Furthermore, Akt phosphorylation was increased by over-expression of the calcium binding-deficient CPNE1 mutant. These results suggest that neither cellular calcium levels nor the localization of CPNE1 affect its function in neuronal differentiation. Collectively, our findings indicating that the C2 domains of CPNE1 play a calcium-independent role in regulating the neuronal differentiation of HiB5 cells.


Subject(s)
Calcium-Binding Proteins/metabolism , Carrier Proteins/metabolism , Fatty Acid-Binding Proteins/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Animals , COS Cells , Calcium/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Chlorocebus aethiops , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/genetics , HEK293 Cells , Humans , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Structure, Tertiary , Rats , Sequence Deletion , Signal Transduction
20.
J Anesth ; 28(1): 81-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23797625

ABSTRACT

PURPOSE: Bupivacaine, levobupivacaine, and ropivacaine are amide local anesthetics. Levobupivacaine and ropivacaine are stereoisomers of bupivacaine and were developed to circumvent the bupivacaine's severe toxicity. The recently characterized background potassium channel, K(2P) TREK-1, is a well-known target for various local anesthetics. The purpose of study is to investigate the differences in inhibitory potency and stereoselectivity among bupivacaine, levobupivacaine, and ropivacaine on K(2P) TREK-1 channels overexpressed in COS-7 cells. METHODS: We investigated the effects of bupivacaine, levobupivacaine, and ropivacaine (10, 50, 100, 200, and 400 µM) on TREK-1 channels expressed in COS-7 cells by using the whole cell patch clamp technique with a voltage ramp protocol ranging from -100 to 100 mV for 200 ms from a holding potential of -70 mV. RESULTS: Bupivacaine, levobupivacaine, and ropivacaine showed reversible inhibition of TREK-1 channels in a concentration-dependent manner. The half-maximal inhibitory concentrations (IC(50)) of bupivacaine, levobupivacaine, and ropivacaine were 95.4 ± 14.6, 126.1 ± 24.5, and 402.7 ± 31.8 µM, respectively. IC(50) values indicated a rank order of potency (bupivacaine > levobupivacaine > ropivacaine) with stereoselectivity. Hill coefficients were 0.84, 0.93, and 0.89 for bupivacaine, levobupivacaine, and ropivacaine, respectively. CONCLUSION: Inhibitory effects on TREK-1 channels by bupivacaine, levobupivacaine, and ropivacaine demonstrated stereoselectivity: bupivacaine was more potent than levobupivacaine and ropivacaine. Inhibition of TREK-1 channels and consecutive depolarization of the cell membrane by bupivacaine, levobupivacaine, and ropivacaine may contribute to the blockade of neuronal conduction and side effects.


Subject(s)
Amides/pharmacology , Anesthetics, Local/pharmacology , Bupivacaine/analogs & derivatives , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Amides/administration & dosage , Anesthetics, Local/administration & dosage , Animals , Bupivacaine/administration & dosage , Bupivacaine/pharmacology , COS Cells , Chlorocebus aethiops , Dose-Response Relationship, Drug , Levobupivacaine , Patch-Clamp Techniques , Ropivacaine , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL