ABSTRACT
BACKGROUND: Refractory depression is a devastating condition with significant morbidity, mortality, and societal cost. Approximately 15% of patients with major depressive disorder are refractory to currently available treatments. We hypothesized metabolic abnormalities contributing to treatment refractory depression are associated with distinct findings identifiable in the cerebrospinal fluid (CSF). Our hypothesis was confirmed by a previous small case-controlled study. Here we present a second, larger replication study. METHODS: We conducted a case-controlled, targeted, metabolomic evaluation of 141 adolescent and adult patients with well-characterized history of depression refractory to three maximum-dose, adequate-duration medication treatments, and 36 healthy controls. Plasma, urine, and CSF metabolic profiling were performed by coupled gas chromatography/mass spectrometry, and high-performance liquid chromatography, electrospray ionization, tandem mass spectrometry. RESULTS: Abnormalities were identified in 67 of 141 treatment refractory depression participants. The CSF abnormalities included: low cerebral folate (n = 20), low tetrahydrobiopterin intermediates (n = 11), and borderline low-tetrahydrobiopterin intermediates (n = 20). Serum abnormalities included abnormal acylcarnitine profile (n = 12) and abnormal serum amino acids (n = 20). Eighteen patients presented with two or more abnormal metabolic findings. Sixteen patients with cerebral folate deficiency and seven with low tetrahydrobiopterin intermediates in CSF showed improvement in depression symptom inventories after treatment with folinic acid and sapropterin, respectively. No healthy controls had a metabolite abnormality. CONCLUSIONS: Examination of metabolic disorders in treatment refractory depression identified an unexpectedly large proportion of patients with potentially treatable abnormalities. The etiology of these abnormalities and their potential roles in pathogenesis remain to be determined.
Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Adult , Adolescent , Humans , Suicidal Ideation , Depressive Disorder, Treatment-Resistant/drug therapy , Depressive Disorder, Major/drug therapy , Metabolomics , Folic AcidABSTRACT
BACKGROUND: Cerebral malaria (CM) pathogenesis remains incompletely understood. Having shown low systemic levels of tetrahydrobiopterin (BH4), an enzymatic cofactor for neurotransmitter synthesis, we hypothesized that BH4 and BH4-dependent neurotransmitters would likewise be low in cerebrospinal fluid (CSF) in CM. METHODS: We prospectively enrolled Tanzanian children with CM and children with nonmalaria central nervous system conditions (NMCs). We measured CSF levels of BH4, neopterin, and BH4-dependent neurotransmitter metabolites, 3-O-methyldopa, homovanillic acid, and 5-hydroxyindoleacetate, and we derived age-adjusted z-scores using published reference ranges. RESULTS: Cerebrospinal fluid BH4 was elevated in CM (nâ =â 49) compared with NMC (nâ =â 51) (z-score 0.75 vs -0.08; Pâ <â .001). Neopterin was increased in CM (z-score 4.05 vs 0.09; Pâ <â .001), and a cutoff at the upper limit of normal (60 nmol/L) was 100% sensitive for CM. Neurotransmitter metabolite levels were overall preserved. A higher CSF BH4/BH2 ratio was associated with increased odds of survival (odds ratio, 2.94; 95% confidence interval, 1.03-8.33; Pâ =â .043). CONCLUSION: Despite low systemic BH4, CSF BH4 was elevated and associated with increased odds of survival in CM. Coma in malaria is not explained by deficiency of BH4-dependent neurotransmitters. Elevated CSF neopterin was 100% sensitive for CM diagnosis and warrants further assessment of its clinical utility for ruling out CM in malaria-endemic areas.
Subject(s)
Biopterins/cerebrospinal fluid , Malaria, Cerebral/mortality , Neopterin/cerebrospinal fluid , Neurotransmitter Agents/cerebrospinal fluid , Pterins/cerebrospinal fluid , Biopterins/analogs & derivatives , Central Nervous System Diseases/cerebrospinal fluid , Child , Child, Preschool , Female , Homovanillic Acid/cerebrospinal fluid , Humans , Hydroxyindoleacetic Acid/cerebrospinal fluid , Infant , Malaria, Cerebral/cerebrospinal fluid , Male , Prospective Studies , Reference Values , Tanzania/epidemiology , Tyrosine/analogs & derivativesABSTRACT
BACKGROUND: Genetic defects of monoamine neurotransmitters are rare neurological diseases amenable to treatment with variable response. They are major causes of early parkinsonism and other spectrum of movement disorders including dopa-responsive dystonia. OBJECTIVES: The objective of this study was to conduct proteomic studies in cerebrospinal fluid (CSF) samples of patients with monoamine defects to detect biomarkers involved in pathophysiology, clinical phenotypes, and treatment response. METHODS: A total of 90 patients from diverse centers of the International Working Group on Neurotransmitter Related Disorders were included in the study (37 untreated before CSF collection, 48 treated and 5 unknown at the collection time). Clinical and molecular metadata were related to the protein abundances in the CSF. RESULTS: Concentrations of 4 proteins were significantly altered, detected by mass spectrometry, and confirmed by immunoassays. First, decreased levels of apolipoprotein D were found in severe cases of aromatic L-amino acid decarboxylase deficiency. Second, low levels of apolipoprotein H were observed in patients with the severe phenotype of tyrosine hydroxylase deficiency, whereas increased concentrations of oligodendrocyte myelin glycoprotein were found in the same subset of patients with tyrosine hydroxylase deficiency. Third, decreased levels of collagen6A3 were observed in treated patients with tetrahydrobiopterin deficiency. CONCLUSION: This study with the largest cohort of patients with monoamine defects studied so far reports the proteomic characterization of CSF and identifies 4 novel biomarkers that bring new insights into the consequences of early dopaminergic deprivation in the developing brain. They open new possibilities to understand their role in the pathophysiology of these disorders, and they may serve as potential predictors of disease severity and therapies. © 2020 International Parkinson and Movement Disorder Society.
Subject(s)
Amino Acid Metabolism, Inborn Errors , Dystonic Disorders , Biomarkers , Humans , Proteomics , Severity of Illness IndexABSTRACT
BACKGROUND: Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder with heterogeneous phenotypic spectrum resulting from disease-causing variants in the dopa decarboxylase (DDC) gene. Consensus guidelines recommend dopamine agonists, monoamine oxidase inhibitors, and other symptomatic treatments, but most patients have an unrelenting disease course with no response to these therapies. CASE PRESENTATION: We describe 2 African American siblings with AADC deficiency and identify 2 DDC gene variants not previously associated with the disorder. The patients were evaluated for cognitive and neurologic impairments. Diagnosis of AADC deficiency was initially based on evaluation of urine and plasma metabolites, followed by targeted DDC gene sequencing. The first patient, a firstborn African American female, had moderate elevations of vanillactic and vanilpyruvic acids, and slight elevation of N-acetylvanilalanine in urine. The second patient, an African American female and younger sibling of the first patient, had low AADC enzyme activity and elevated 3-O-methyldopa levels in plasma. Genetic testing confirmed that both siblings possessed the same 2 DDC gene variants, which were identified as NM_000790.3: c.48C > A (p.Tyr16Ter) and NM_000790.3: c.116G > C (p.Arg39Pro). CONCLUSIONS: This report describes 2 previously unknown patients with AADC deficiency and confirmed the presence of 2 DDC gene variants not previously associated with this disorder. Further research is needed to identify disease-modifying treatments for this devastating neurometabolic disorder. Gene therapy with a recombinant adeno-associated viral vector serotype 2 carrying the gene for the human AADC protein (AAV2-hAADC) is currently in clinical development.
Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Black or African American/genetics , Aromatic-L-Amino-Acid Decarboxylases/genetics , Child, Preschool , Female , Genetic Variation , Humans , Infant , Infant, Newborn , SiblingsABSTRACT
Tetrahydrobiopterin (BH4) is the natural cofactor of aromatic amino acid hydroxylases and essential for degradation of phenylalanine and synthesis of catecholamines and serotonin. It can be synthesized either de novo from GTP or through the salvage pathway from sepiapterin. Sepiapterin, a natural precursor of BH4, is a more stable molecule and is transported more efficiently across cellular membranes, thus having potentially significant advantage over BH4 as a pharmacological agent for diseases associated with BH4-deficient conditions. We report the results of a first-in-humans, randomized, double-blind, placebo-controlled, dose-ranging, Phase I clinical trial in 83 healthy volunteers of CNSA-001, a novel formulation of sepiapterin. Single oral doses of 2.5-80â¯mg/kg CNSA-001 caused dose-related increases in plasma sepiapterin (mean Cmax 0.58-2.92â¯ng/mL) and BH4 (mean Cmax 57-312â¯ng/mL). Maximum plasma concentrations were achieved in about 1-2â¯h (sepiapterin) or about 4â¯h (BH4) after CNSA-001 oral intake. Increases in plasma BH4 were substantially larger in absolute terms and on a dose-for-dose basis following treatment with CNSA-001 vs. sapropterin dihydrochloride, a synthetic form of BH4. The pharmacokinetics of plasma sepiapterin and BH4 were similar before and after seven days of repeat daily dosing with CNSA-001 at 5, 20 or 60â¯mg/kg indicating little or no drug accumulation. Oral administration of CNSA-001 resulted in higher concentrations of sepiapterin in fasted vs. fed subjects, but overall BH4 plasma exposure following CNSA-001 intake increased by 1.7-1.8-fold in fed subjects. CNSA-001 was well tolerated, with no clear dose-relationship for adverse events (AE), no serious AE and no study discontinuations for AE. These data indicate that CNSA-001 is rapidly and efficiently converted to BH4 in humans supporting further clinical evaluation of CNSA-001 for the management of PKU, primary BH4 deficiencies and other diseases associated with deficient BH4 metabolism.
Subject(s)
Biopterins/analogs & derivatives , Phenylketonurias/drug therapy , Pterins/administration & dosage , Pterins/blood , Administration, Oral , Adult , Australia , Biopterins/deficiency , Dose-Response Relationship, Drug , Double-Blind Method , Drug Compounding , Female , Healthy Volunteers , Humans , Male , Phenylalanine , Pterins/pharmacokinetics , SerotoninABSTRACT
Aromatic-l-amino acid decarboxylase (AADC) deficiency is an ultra-rare inherited autosomal recessive disorder characterized by sharply reduced synthesis of dopamine as well as other neurotransmitters. Symptoms, including hypotonia and movement disorders (especially oculogyric crisis and dystonia) as well as autonomic dysfunction and behavioral disorders, vary extensively and typically emerge in the first months of life. However, diagnosis is difficult, requiring analysis of metabolites in cerebrospinal fluid, assessment of plasma AADC activity, and/or DNA sequence analysis, and is frequently delayed for years. New metabolomics techniques promise early diagnosis of AADC deficiency by detection of 3-O-methyl-dopa in serum or dried blood spots. A total of 82 dopa decarboxylase (DDC) variants in the DDC gene leading to AADC deficiency have been identified and catalogued for all known patients (nâ¯=â¯123). Biochemical and bioinformatics studies provided insight into the impact of many variants. c.714+4A>T, p.S250F, p.R347Q, and p.G102S are the most frequent variants (cumulative allele frequencyâ¯=â¯57%), and c.[714+4A>T];[714+4A>T], p.[S250F];[S250F], and p.[G102S];[G102S] are the most frequent genotypes (cumulative genotype frequencyâ¯=â¯40%). Known or predicted molecular effect was defined for 79 variants. Most patients experience an unrelenting disease course with poor or no response to conventional medical treatments, including dopamine agonists, monoamine oxidase inhibitors, and pyridoxine derivatives. The advent of gene therapy represents a potentially promising new avenue for treatment of patients with AADC deficiency. Clinical studies based on the direct infusion of engineered adeno-associated virus type 2 vectors into the putamen have demonstrated acceptable safety and tolerability and encouraging improvement in motor milestones and cognitive symptoms. The success of gene therapy in AADC deficiency treatment will depend on timely diagnosis to facilitate treatment administration before the onset of neurologic damage.
Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Amino Acid Metabolism, Inborn Errors/diagnosis , Aromatic-L-Amino-Acid Decarboxylases/genetics , Computational Biology , Dopamine/metabolism , Dopamine Agonists/therapeutic use , Genetic Therapy , Humans , Metabolomics , Neurotransmitter Agents/metabolismABSTRACT
Pyridoxine-dependent epilepsy (PDE) is often characterized as an early onset epileptic encephalopathy with dramatic clinical improvement following pyridoxine supplementation. Unfortunately, not all patients present with classic neonatal seizures or respond to an initial pyridoxine trial, which can result in the under diagnosis of this treatable disorder. Restriction of lysine intake and transport is associated with improved neurologic outcomes, although treatment should be started in the first year of life to be effective. Because of the documented diagnostic delay and benefit of early treatment, we aimed to develop a newborn screening method for PDE. Previous studies have demonstrated the accumulation of Δ1 -piperideine-6-carboxylate and α-aminoadipic semialdehyde in individuals with PDE, although these metabolites are unstable at room temperature (RT) limiting their utility for newborn screening. As a result, we sought to identify a biomarker that could be applied to current newborn screening paradigms. We identified a novel metabolite, 6-oxo-pipecolate (6-oxo-PIP), which accumulates in substantial amounts in blood, plasma, urine, and cerebral spinal fluid of individuals with PDE. Using a stable isotope-labeled internal standard, we developed a nonderivatized liquid chromatography tandem mass spectrometry-based method to quantify 6-oxo-PIP. This method replicates the analytical techniques used in many laboratories and could be used with few modifications in newborn screening programs. Furthermore, 6-oxo-PIP was measurable in urine for 4 months even when stored at RT. Herein, we report a novel biomarker for PDE that is stable at RT and can be quantified using current newborn screening techniques.
Subject(s)
Epilepsy/diagnosis , Neonatal Screening/methods , Pipecolic Acids/analysis , Biomarkers , Chromatography, Liquid , Female , Humans , Infant, Newborn , MaleABSTRACT
Pyridoxine dependent epilepsy (PDE) is a treatable epileptic encephalopathy characterized by a positive response to pharmacologic doses of pyridoxine. Despite seizure control, at least 75% of individuals have intellectual disability and developmental delay. Current treatment paradigms have resulted in improved cognitive outcomes emphasizing the importance of an early diagnosis. As genetic testing is increasingly accepted as first tier testing for epileptic encephalopathies, we aimed to provide a comprehensive overview of ALDH7A1 mutations that cause PDE. The genotypes, ethnic origin and reported gender was collected from 185 subjects with a diagnosis of PDE. The population frequency for the variants in this report and the existing literature were reviewed in the Genome Aggregation Database (gnomAD). Novel variants identified in population databases were also evaluated through in silico prediction software and select variants were over-expressed in an E.coli-based expression system to measure α-aminoadipic semialdehyde dehydrogenase activity and production of α-aminoadipic acid. This study adds 47 novel variants to the literature resulting in a total of 165 reported pathogenic variants. Based on this report, in silico predictions, and general population data, we estimate an incidence of approximately 1:64,352 live births. This report provides a comprehensive overview of known ALDH7A1 mutations that cause PDE, and suggests that PDE may be more common than initially estimated. Due to the relative high frequency of the disease, the likelihood of under-diagnosis given the wide clinical spectrum and limited awareness among clinicians as well as the cognitive improvement noted with early treatment, newborn screening for PDE may be warranted.
Subject(s)
Aldehyde Dehydrogenase/genetics , Epilepsy/genetics , 2-Aminoadipic Acid/metabolism , Genotype , Humans , MutationABSTRACT
Tetrahydrobiopterin (BH4) is a co-factor required for catalytic activity of nitric oxide synthase (NOS) and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH2), which inhibits NOS. Depending on BH4 availability, NOS oscillates between NO synthase and NADPH oxidase: as the BH4/BH2 ratio decreases, NO production falls and is replaced by superoxide. In African children and Asian adults with severe malaria, NO bioavailability decreases and plasma phenylalanine increases, together suggesting possible BH4 deficiency. The primary three biopterin metabolites (BH4, BH2 and B0 [biopterin]) and their association with disease severity have not been assessed in falciparum malaria. We measured pterin metabolites in urine of adults with severe falciparum malaria (SM; n=12), moderately-severe malaria (MSM, n=17), severe sepsis (SS; n=5) and healthy subjects (HC; n=20) as controls. In SM, urinary BH4 was decreased (median 0.16 »mol/mmol creatinine) compared to MSM (median 0.27), SS (median 0.54), and HC (median 0.34)]; p<0.001. Conversely, BH2 was increased in SM (median 0.91 »mol/mmol creatinine), compared to MSM (median 0.67), SS (median 0.39), and HC (median 0.52); p<0.001, suggesting increased oxidative stress and insufficient recycling of BH2 back to BH4 in severe malaria. Overall, the median BH4/BH2 ratio was lowest in SM [0.18 (IQR: 0.04-0.32)] compared to MSM (0.45, IQR 0.27-61), SS (1.03; IQR 0.54-2.38) and controls (0.66; IQR 0.43-1.07); p<0.001. In malaria, a lower BH4/BH2 ratio correlated with decreased microvascular reactivity (r=0.41; p=0.03) and increased ICAM-1 (r=-0.52; p=0.005). Decreased BH4 and increased BH2 in severe malaria (but not in severe sepsis) uncouples NOS, leading to impaired NO bioavailability and potentially increased oxidative stress. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.
Subject(s)
Biopterins/analogs & derivatives , Endothelium/metabolism , Malaria, Falciparum/urine , Microcirculation , Sepsis/urine , Adult , Biopterins/urine , Creatinine/blood , Creatinine/urine , Endothelium/pathology , Female , Humans , Malaria, Falciparum/blood , Malaria, Falciparum/therapy , Male , Nitric Oxide/blood , Sepsis/blood , Severity of Illness IndexABSTRACT
Decreased bioavailability of nitric oxide (NO) is a major contributor to the pathophysiology of severe falciparum malaria. Tetrahydrobiopterin (BH4) is an enzyme cofactor required for NO synthesis from L-arginine. We hypothesized that systemic levels of BH4 would be decreased in children with cerebral malaria, contributing to low NO bioavailability. In an observational study in Tanzania, we measured urine levels of biopterin in its various redox states (fully reduced [BH4] and the oxidized metabolites, dihydrobiopterin [BH2] and biopterin [B0]) in children with uncomplicated malaria (UM, n = 55), cerebral malaria (CM, n = 45), non-malaria central nervous system conditions (NMC, n = 48), and in 111 healthy controls (HC). Median urine BH4 concentration in CM (1.10 [IQR:0.55-2.18] µmol/mmol creatinine) was significantly lower compared to each of the other three groups - UM (2.10 [IQR:1.32-3.14];p<0.001), NMC (1.52 [IQR:1.01-2.71];p = 0.002), and HC (1.60 [IQR:1.15-2.23];p = 0.005). Oxidized biopterins were increased, and the BH4:BH2 ratio markedly decreased in CM. In a multivariate logistic regression model, each Log10-unit decrease in urine BH4 was independently associated with a 3.85-fold (95% CI:1.89-7.61) increase in odds of CM (p<0.001). Low systemic BH4 levels and increased oxidized biopterins contribute to the low NO bioavailability observed in CM. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.
Subject(s)
Biopterins/analogs & derivatives , Malaria, Cerebral/urine , Malaria, Falciparum/urine , Biopterins/urine , Child, Preschool , Female , Humans , Male , Nitric Oxide/metabolism , Oxidation-Reduction , Retrospective StudiesABSTRACT
Dopamine transporter deficiency syndrome due to SLC6A3 mutations is the first inherited dopamine 'transportopathy' to be described, with a classical presentation of early infantile-onset progressive parkinsonism dystonia. In this study we have identified a new cohort of patients with dopamine transporter deficiency syndrome, including, most significantly, atypical presentation later in childhood with a milder disease course. We report the detailed clinical features, molecular genetic findings and in vitro functional investigations undertaken for adult and paediatric cases. Patients presenting with parkinsonism dystonia or a neurotransmitter profile characteristic of dopamine transporter deficiency syndrome were recruited for study. SLC6A3 mutational analysis was undertaken in all patients. The functional consequences of missense variants on the dopamine transporter were evaluated by determining the effect of mutant dopamine transporter on dopamine uptake, protein expression and amphetamine-mediated dopamine efflux using an in vitro cellular heterologous expression system. We identified eight new patients from five unrelated families with dopamine transporter deficiency syndrome. The median age at diagnosis was 13 years (range 1.5-34 years). Most significantly, the case series included three adolescent males with atypical dopamine transporter deficiency syndrome of juvenile onset (outside infancy) and progressive parkinsonism dystonia. The other five patients in the cohort presented with classical infantile-onset parkinsonism dystonia, with one surviving into adulthood (currently aged 34 years) and labelled as having 'juvenile parkinsonism'. All eight patients harboured homozygous or compound heterozygous mutations in SLC6A3, of which the majority are previously unreported variants. In vitro studies of mutant dopamine transporter demonstrated multifaceted loss of dopamine transporter function. Impaired dopamine uptake was universally present, and more severely impacted in dopamine transporter mutants causing infantile-onset rather than juvenile-onset disease. Dopamine transporter mutants also showed diminished dopamine binding affinity, reduced cell surface transporter, loss of post-translational dopamine transporter glycosylation and failure of amphetamine-mediated dopamine efflux. Our data series expands the clinical phenotypic continuum of dopamine transporter deficiency syndrome and indicates that there is a phenotypic spectrum from infancy (early onset, rapidly progressive disease) to childhood/adolescence and adulthood (later onset, slower disease progression). Genotype-phenotype analysis in this cohort suggests that higher residual dopamine transporter activity is likely to contribute to postponing disease presentation in these later-onset adult cases. Dopamine transporter deficiency syndrome remains under-recognized and our data highlights that dopamine transporter deficiency syndrome should be considered as a differential diagnosis for both infantile- and juvenile-onset movement disorders, including cerebral palsy and juvenile parkinsonism.
Subject(s)
Dopamine Plasma Membrane Transport Proteins/deficiency , Dopamine Plasma Membrane Transport Proteins/genetics , Genetic Association Studies , Movement Disorders/genetics , Adolescent , Adult , Age of Onset , Child , Child, Preschool , DNA Mutational Analysis , Female , Humans , Immunoblotting , Infant , Male , Movement Disorders/complications , Pedigree , Phenotype , Polymerase Chain Reaction , Young AdultABSTRACT
Importance: Antemortem infection is a risk factor for sudden infant death syndrome (SIDS)-the leading postneonatal cause of infant mortality in the developed world. Manifestations of infection and inflammation are not always apparent in clinical settings or by standard autopsy; thus, enhanced resolution approaches are needed. Objective: To ascertain whether a subset of SIDS cases is associated with neuroinflammation and occult infection. Design, Setting, and Participants: In this case-control study, postmortem fluids from SIDS cases and controls collected between July 2011 and November 2018 were screened for elevated inflammatory markers, specifically cerebrospinal fluid (CSF) neopterin and CSF and serum cytokines. CSF, liver, and brain tissue from SIDS cases with elevated CSF neopterin were subjected to metagenomic next-generation sequencing (mNGS) to probe for infectious pathogens. Brainstem tissue from a subset of these cases was analyzed by single-nucleus RNA sequencing (snRNAseq) to measure cell type-specific gene expression associated with neuroinflammation and infection. All tissue and fluid analyses were performed from April 2019 to January 2023 in a pathology research laboratory. Included was autopsy material from infants dying of SIDS and age-matched controls dying of known causes. Exposures: There were no interventions or exposures. Main Outcomes and Measures: CSF neopterin levels were measured by high-performance liquid chromatography. Cytokines were measured by multiplex fluorometric assay. mNGS was performed on liver, CSF, brain, and brainstem tissue. snRNAseq was performed on brainstem tissue. Results: A cohort of 71 SIDS cases (mean [SD] age, 55.2 [11.4] postconceptional weeks; 42 male [59.2%]) and 20 controls (mean [SD] age, 63.2 [16.9] postconceptional weeks; 11 male [55.0%]) had CSF and/or serum available. CSF neopterin was screened in 64 SIDS cases and 15 controls, with no exclusions. Tissues from 6 SIDS cases were further analyzed. For CSF neopterin measures, SIDS samples were from infants with mean (SD) age of 54.5 (11.3) postconceptional weeks (38 male [59.4%]) and control samples were from infants with mean (SD) age of 61.5 (17.4) postconceptional weeks (7 male [46.7%]). A total of 6 SIDS cases (9.3%) with high CSF neopterin were identified, suggestive of neuroinflammation. mNGS detected human parechovirus 3 (HPeV3) in tissue and CSF from 1 of these 6 cases. snRNAseq of HPeV3-positive brainstem tissue (medulla) revealed dramatic enrichment of transcripts for genes with predominately inflammatory functions compared with 3 age-matched SIDS cases with normal CSF neopterin levels. Conclusions and Relevance: Next-generation molecular tools in autopsy tissue provide novel insight into pathogens that go unrecognized by normal autopsy methodology, including in infants dying suddenly and unexpectedly.
Subject(s)
Encephalitis , Sudden Infant Death , Infant , Humans , Male , Middle Aged , Sudden Infant Death/genetics , Sudden Infant Death/pathology , Neuroinflammatory Diseases , Case-Control Studies , Multiomics , Neopterin , Brain Stem/pathology , Encephalitis/complications , CytokinesABSTRACT
OBJECTIVE: Sepiapterin reductase deficiency (SRD) is an under-recognized levodopa-responsive disorder. We describe clinical, biochemical, and molecular findings in a cohort of patients with this treatable condition. We aim to improve awareness of the phenotype and available diagnostic and therapeutic strategies to reduce delayed diagnosis or misdiagnosis, optimize management, and improve understanding of pathophysiologic mechanisms. METHODS: Forty-three individuals with SRD were identified from 23 international medical centers. The phenotype and treatment response were assessed by chart review using a detailed standardized instrument and by literature review for cases for which records were unavailable. RESULTS: In most cases, motor and language delays, axial hypotonia, dystonia, weakness, oculogyric crises, and diurnal fluctuation of symptoms with sleep benefit become evident in infancy or childhood. Average age of onset is 7 months, with delay to diagnosis of 9.1 years. Misdiagnoses of cerebral palsy (CP) are common. Most patients benefit dramatically from levodopa/carbidopa, often with further improvement with the addition of 5-hydroxytryptophan. Cerebrospinal fluid findings are distinctive. Diagnosis is confirmed by mutation analysis and/or enzyme activity measurement in cultured fibroblasts. INTERPRETATION: Common, clinical findings of SRD, aside from oculogyric crises and diurnal fluctuation, are nonspecific and mimic CP with hypotonia or dystonia. Patients usually improve dramatically with treatment. Consequently, we recommend consideration of SRD not only in patients with levodopa-responsive motor disorders, but also in patients with developmental delays with axial hypotonia, and patients with unexplained or atypical presumed CP. Biochemical investigation of cerebrospinal fluid is the preferred method of initial investigation. Early diagnosis and treatment are recommended to prevent ongoing brain dysfunction.
Subject(s)
Alcohol Oxidoreductases/deficiency , Alcohol Oxidoreductases/genetics , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Movement Disorders/diagnosis , Movement Disorders/genetics , Age of Onset , Base Sequence , Cerebral Palsy/diagnosis , Child , Child, Preschool , DNA Mutational Analysis , Developmental Disabilities/drug therapy , Diagnosis, Differential , Dopamine Agents/therapeutic use , Female , Humans , Infant , Male , Molecular Sequence Data , Movement Disorders/drug therapy , Mutation , Neurotransmitter Agents/analysis , Neurotransmitter Agents/therapeutic useABSTRACT
Rett syndrome (RTT) is characterized by specific motor, cognitive, and behavioral deficits. Because several of these abnormalities occur in other disease states associated with alterations in aminergic neurotransmitters, we investigated the contribution of such alterations to RTT pathogenesis. We found that both individuals with RTT and Mecp2-null mice have lower-than-normal levels of aminergic metabolites and content. Deleting Mecp2 from either TH-positive dopaminergic and noradrenergic neurons or PET1-positive serotonergic neurons in mice decreased corresponding neurotransmitter concentration and specific phenotypes, likely through MeCP2 regulation of rate-limiting enzymes involved in aminergic neurotransmitter production. These data support a cell-autonomous, MeCP2-dependent mechanism for the regulation of aminergic neurotransmitter synthesis contributing to unique behavioral phenotypes.
Subject(s)
Amines/metabolism , Homovanillic Acid/metabolism , Hydroxyindoleacetic Acid/metabolism , Mental Disorders/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Neurons/metabolism , Animals , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout , Neurons/enzymology , Phenotype , Tryptophan Hydroxylase/metabolism , Tyrosine 3-Monooxygenase/metabolismABSTRACT
Tyrosine hydroxylase deficiency (THD) is a treatable inborn error of dopamine biosynthesis caused by mutations in TH. Two presentations are described. Type A, milder, presents after 12 months of age with progressive hypokinesis and rigidity. Type B presents before 12 months as a progressive complex encephalopathy. We report a girl with mild THD who had recurrent episodes of neurological decompensations. Before the first episode, she had normal development except for mild head tremor. Episodes occurred at 12, 19, and 25 months of age. After viral infections or vaccination, she developed lethargy, worsened tremor, language, and motor regression including severe axial hypotonia, recuperating over several weeks of intensive rehabilitation but with residual tremor and mild lower limb spasticity. Basal ganglia imaging was normal. Exome sequencing revealed two missense variants of uncertain significance in TH: c.1147G>T and c.1084G>A. Both have low gnomAD allele frequencies and in silico, are predicted to be deleterious. Cerebrospinal fluid analysis showed low homovanillic acid (HVA, 160 nmol/L, reference 233-938) and low HVA/5-hydroxyindolacetic acid molar ratio (1.07, reference .5-3.5). She responded rapidly to L-Dopa/carbidopa without further episodes. Literature review revealed four other THD patients who had a total of seven episodes of marked hypotonia and motor regression following infections, occurring between ages 12 months and 6 years. All improved with L-Dopa/carbidopa treatment. Intermittent THD is treatable, important for genetic counseling, and should be considered after even a single episode of marked hypotonia with recuperation over weeks, especially in patients with preexisting tremor, dystonia, or rigidity.
ABSTRACT
BACKGROUND: Serotonin has an important role in vascular resistance and blood pressure control, and a functional serotonin transporter polymorphism has been associated with migraine. Disturbances in serotonin metabolism have been associated with autism, depression, and myoclonus related conditions, but serotonin has far more functions in the body. Familial hemiplegic migraine is a rare autosomal dominant subtype of migraine with aura in which attacks are associated with hemiparesis. CASES: We present two siblings with hemiplegic migraine, depression, progressive spastic paraparesis, myelopathy, and spinal cord atrophy. One of the sisters presented with prolonged coma after a migraine episode. Both sisters were found to have low cerebrospinal fluid serotonin metabolite (5-hydroxyindoleacetic acid), low platelet serotonin levels, and diminished serotonin transport capacity. Their clinical symptoms improved on 5-hydroxytryptophan replacement therapy. Mutational analysis of the CACNA1A and ATP1A2 genes was negative. CONCLUSION: This is the first time that systemic serotonin deficiency has been described in familial hemiplegic migraine. We hypothesize that the deficiency of serotonin transport may be part of a complex cellular membrane trafficking dysfunction involving not only the serotonin transporter but also other transporters and ion channels.
Subject(s)
Coma/blood , Migraine with Aura/blood , Mood Disorders/blood , Seizures/blood , Serotonin/blood , Adolescent , Child , Coma/cerebrospinal fluid , Coma/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Migraine with Aura/cerebrospinal fluid , Migraine with Aura/congenital , Mood Disorders/cerebrospinal fluid , Mood Disorders/genetics , Seizures/cerebrospinal fluid , Seizures/genetics , Serotonin/cerebrospinal fluid , SiblingsABSTRACT
We describe the electroencephalographic and clinical seizure manifestations of pyridoxal 5'-phosphate-dependent epilepsy (PLP-DE) in two patients [diagnosis confirmed by low cerebrospinal fluid (CSF) PLP, complete resolution of previously intractable seizures with PLP supplementation, negative pyridoxine-dependent epilepsy CSF biomarkers, and/or positive disease causing pyridox(am)ine 5'-phosphate oxidase gene mutation] along with a comprehensive review of the literature. One patient presented with neonatal tonic status epilepticus with subsequent generalized tonic-clonic seizures, and the second, with refractory complex partial seizures starting at 2 years of age. The pretreatment EEG revealed, interictally, burst suppression, multifocal independent sharp waves, and electrical status epilepticus in sleep. Ictally and interictally, it revealed runs of unilateral spike/slow waves. Previously reported features include burst suppression, myoclonus, tonic seizures, clonic seizures, and spasms. In the appropriate clinical scenario, the aforementioned features should raise the possibility of PLP-DE and appropriate treatment should be initiated. The first late-onset case (at 2 years) of PLP-DE is reported.
Subject(s)
Electroencephalography , Epilepsy/genetics , Epilepsy/physiopathology , Mutation/genetics , Pyridoxal Phosphate/genetics , Child, Preschool , Electroencephalography/drug effects , Epilepsy/drug therapy , Humans , Infant , Male , Pyridoxal Phosphate/cerebrospinal fluid , Pyridoxal Phosphate/therapeutic useABSTRACT
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder characterized by deficient synthesis of dopamine and serotonin. It presents in early infancy, and causes severe developmental disability and lifelong motor, behavioral, and autonomic symptoms including oculogyric crises (OGC), sleep disorder, and mood disturbance. We investigated the safety and efficacy of delivery of a viral vector expressing AADC (AAV2-hAADC) to the midbrain in children with AADC deficiency (ClinicalTrials.gov Identifier NCT02852213). Seven (7) children, aged 4-9 years underwent convection-enhanced delivery (CED) of AAV2-hAADC to the bilateral substantia nigra (SN) and ventral tegmental area (VTA) (total infusion volume: 80 µL per hemisphere) in 2 dose cohorts: 1.3 × 1011 vg (n = 3), and 4.2 × 1011 vg (n = 4). Primary aims were to demonstrate the safety of the procedure and document biomarker evidence of restoration of brain AADC activity. Secondary aims were to assess clinical improvement in symptoms and motor function. Direct bilateral infusion of AAV2-hAADC was safe, well-tolerated and achieved target coverage of 98% and 70% of the SN and VTA, respectively. Dopamine metabolism was increased in all subjects and FDOPA uptake was enhanced within the midbrain and the striatum. OGC resolved completely in 6 of 7 subjects by Month 3 post-surgery. Twelve (12) months after surgery, 6/7 subjects gained normal head control and 4/7 could sit independently. At 18 months, 2 subjects could walk with 2-hand support. Both the primary and secondary endpoints of the study were met. Midbrain gene delivery in children with AADC deficiency is feasible and safe, and leads to clinical improvements in symptoms and motor function.
Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Dependovirus/genetics , Dopaminergic Neurons/metabolism , Gene Transfer Techniques , Genetic Therapy , Magnetic Resonance Imaging , Mesencephalon/pathology , Amino Acid Metabolism, Inborn Errors/cerebrospinal fluid , Amino Acid Metabolism, Inborn Errors/physiopathology , Aromatic-L-Amino-Acid Decarboxylases/cerebrospinal fluid , Aromatic-L-Amino-Acid Decarboxylases/genetics , Child , Child, Preschool , Dyskinesias/physiopathology , Female , Genetic Therapy/adverse effects , Humans , Male , Metabolome , Motor Activity , Neurotransmitter Agents/cerebrospinal fluid , Neurotransmitter Agents/metabolism , Time FactorsABSTRACT
BackgroundPyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine catabolism that presents with refractory epilepsy in newborns. Biallelic ALDH7A1 variants lead to deficiency of α-aminoadipic semialdehyde dehydrogenase/antiquitin, resulting in accumulation of piperideine-6-carboxylate (P6C), and secondary deficiency of the important cofactor pyridoxal-5'-phosphate (PLP, active vitamin B6) through its complexation with P6C. Vitamin B6 supplementation resolves epilepsy in patients, but intellectual disability may still develop. Early diagnosis and treatment, preferably based on newborn screening, could optimize long-term clinical outcome. However, no suitable PDE-ALDH7A1 newborn screening biomarkers are currently available.MethodsWe combined the innovative analytical methods untargeted metabolomics and infrared ion spectroscopy to discover and identify biomarkers in plasma that would allow for PDE-ALDH7A1 diagnosis in newborn screening.ResultsWe identified 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylic acid (2-OPP) as a PDE-ALDH7A1 biomarker, and confirmed 6-oxopiperidine-2-carboxylic acid (6-oxoPIP) as a biomarker. The suitability of 2-OPP as a potential PDE-ALDH7A1 newborn screening biomarker in dried bloodspots was shown. Additionally, we found that 2-OPP accumulates in brain tissue of patients and Aldh7a1-knockout mice, and induced epilepsy-like behavior in a zebrafish model system.ConclusionThis study has opened the way to newborn screening for PDE-ALDH7A1. We speculate that 2-OPP may contribute to ongoing neurotoxicity, also in treated PDE-ALDH7A1 patients. As 2-OPP formation appears to increase upon ketosis, we emphasize the importance of avoiding catabolism in PDE-ALDH7A1 patients.FundingSociety for Inborn Errors of Metabolism for Netherlands and Belgium (ESN), United for Metabolic Diseases (UMD), Stofwisselkracht, Radboud University, Canadian Institutes of Health Research, Dutch Research Council (NWO), and the European Research Council (ERC).