Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 101(33): 12171-6, 2004 Aug 17.
Article in English | MEDLINE | ID: mdl-15292516

ABSTRACT

IMP dehydrogenase (IMPDH) is the rate-limiting enzyme for de novo GMP synthesis. Its activity is correlated with cell growth, and it is the target of a number of proven and experimental drug therapies including mycophenolic acid (MPA). MPA inhibits the enzyme by trapping a covalent nucleotide-enzyme intermediate. Saccharomyces cerevisiae has four IMPDH genes called IMD1-IMD4. IMD2 is transcriptionally regulated and is the only one that enables yeast to grow in the presence of MPA. We show here that de novo synthesis of the IMD2-encoded protein is strongly induced upon MPA treatment. We also monitor the in vivo formation of a covalent nucleotide-enzyme intermediate for Imd2, Imd3, and Imd4 that accumulates in the presence of MPA. Complete formation of the Imd2 intermediate requires drug concentrations manyfold higher than that required to quantitatively trap the Imd3- or Imd4-nucleotide adducts. Purification of the tagged IMD gene products reveals that the family of polypeptides coassemble to form heteromeric IMPDH complexes, suggesting that they form mixed tetramers. These data demonstrate that S. cerevisiae harbor multiple IMPDH enzymes with varying drug sensitivities and offer an assay to monitor the inhibition of IMPDH in living cells. They also suggest that mixed inhibition profiles may result from heteromeric complexes in cell types that contain multiple IMPDH gene products. The mobility shift assay could serve as a tool for the detection of drug-inactivated IMPDH in the cells of patients receiving MPA therapy.


Subject(s)
IMP Dehydrogenase/antagonists & inhibitors , Mycophenolic Acid/pharmacology , Base Sequence , DNA, Fungal/genetics , Enzyme Inhibitors/pharmacology , Genes, Fungal , Humans , IMP Dehydrogenase/biosynthesis , IMP Dehydrogenase/genetics , Isoenzymes/antagonists & inhibitors , Isoenzymes/biosynthesis , Isoenzymes/genetics , Plasmids/genetics , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics
2.
J Biol Chem ; 278(31): 28470-8, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12746440

ABSTRACT

IMP dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo synthesis of GTP. Yeast with mutations in the transcription elongation machinery are sensitive to inhibitors of this enzyme such as 6-azauracil and mycophenolic acid, at least partly because of their inability to transcriptionally induce IMPDH. To understand the molecular basis of this drug-sensitive phenotype, we have dissected the expression and function of a four-gene family in yeast called IMD1 through IMD4. We show here that these family members are distinct, despite a high degree of amino acid identity between the proteins they encode. Extrachromosomal copies of IMD1, IMD3, or IMD4 could not rescue the drug-sensitive phenotype of IMD2 deletants. When overexpressed, IMD3 or IMD4 weakly compensated for deletion of IMD2. IMD1 is transcriptionally silent and bears critical amino acid substitutions compared with IMD2 that destroy its function, offering strong evidence that it is a pseudogene. The simultaneous deletion of all four IMD genes was lethal unless growth media were supplemented with guanine. This suggests that there are no other essential functions of the IMPDH homologs aside from IMP dehydrogenase activity. Although neither IMD3 nor IMD4 could confer drug resistance to cells lacking IMD2, either alone was sufficient to confer guanine prototrophy. The special function of IMD2 was provided by its ability to be transcriptionally induced and the probable intrinsic drug resistance of its enzymatic activity.


Subject(s)
Drug Resistance, Fungal/genetics , Guanine/metabolism , IMP Dehydrogenase/genetics , Mycophenolic Acid/pharmacology , Saccharomyces cerevisiae/genetics , Binding Sites , Gene Deletion , Gene Duplication , Gene Expression , IMP Dehydrogenase/physiology , Mutagenesis , Polymerase Chain Reaction , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL