Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Angew Chem Int Ed Engl ; 62(1): e202213183, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36321750

ABSTRACT

We report a new synthetic strategy for the flexible preparation of forskolin-like molecules. The approach is different from the previously published works and employs a convergent assembly of the tricyclic labdane-type core from pre-functionalized cyclic building blocks. Stereoselective Michael addition enabled the fragment coupling with excellent control over three newly created contiguous stereocenters, all-carbon quaternary centers included. Silyl enol ether-promoted ring-opening metathesis paired with ring closure were the other key steps enabling concise assembly of the tricyclic core. Late-stage functionalization sequences transformed the tricyclic intermediates into a set of different forskolin-like molecules. The modular nature of the synthetic scheme described herein has the potential to become a general platform for the preparation of analogs of forskolin and other complex tricyclic labdanes.


Subject(s)
Diterpenes , Colforsin , Stereoisomerism , Ethers
2.
Tumour Biol ; 39(10): 1010428317727479, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29025359

ABSTRACT

A broad spectrum of tumors develop resistance to classic chemotherapy, necessitating the discovery of new therapies. One successful strategy exploits the synthetic lethality between poly(ADP-ribose) polymerase 1/2 proteins and DNA damage response genes, including BRCA1, a factor involved in homologous recombination-mediated DNA repair, and CDK12, a transcriptional kinase known to regulate the expression of DDR genes. CHK1 inhibitors have been shown to enhance the anti-cancer effect of DNA-damaging compounds. Since loss of BRCA1 increases replication stress and leads to DNA damage, we tested a hypothesis that CDK12- or BRCA1-depleted cells rely extensively on S-phase-related CHK1 functions for survival. The silencing of BRCA1 or CDK12 sensitized tumor cells to CHK1 inhibitors in vitro and in vivo. BRCA1 downregulation combined with CHK1 inhibition induced excessive amounts of DNA damage, resulting in an inability to complete the S-phase. Therefore, we suggest CHK1 inhibition as a strategy for targeting BRCA1- or CDK12-deficient tumors.


Subject(s)
BRCA1 Protein/genetics , Checkpoint Kinase 1/genetics , Colorectal Neoplasms/genetics , Cyclin-Dependent Kinases/genetics , Animals , BRCA1 Protein/antagonists & inhibitors , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Cyclin-Dependent Kinases/antagonists & inhibitors , DNA Damage/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , HCT116 Cells , Humans , Mice , Poly (ADP-Ribose) Polymerase-1/genetics , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Xenograft Model Antitumor Assays
3.
J Org Chem ; 82(7): 3382-3402, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28267331

ABSTRACT

Carbocyclic C-nucleosides are quite rare. Our route enables flexible preparation of three classes of these nucleoside analogs from common precursors-properly substituted cyclopentanones, which can be prepared racemic (in six steps) or optically pure (in ten steps) from inexpensive norbornadiene. The methodology allows flexible manipulation of individual positions around the cyclopentane ring, namely highly diastereoselective installation of carbo- and heterocyclic substituents at position 1', orthogonal functionalization of position 5', and efficient inversion of stereochemistry at position 2'. Newly prepared carbocyclic C-analog of tubercidine, profiled in MCF7 (breast cancer) and HFF1 (human foreskin fibroblasts) cell cultures, is less potent than tubercidine itself, but more selectively toxic toward the tumorigenic cells.


Subject(s)
Cyclopentanes/pharmacology , Nucleosides/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Humans , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/chemistry , Stereoisomerism
4.
Angew Chem Int Ed Engl ; 56(41): 12586-12589, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28782270

ABSTRACT

A 24-step synthesis of (±)-forskolin is presented, which delivered hundred milligram quantities of this complex diterpene in one pass. Transformations key to our approach include: a) a strategic allylic transposition, b) stepwise assembly of a sterically encumbered isoxazole ring, and c) citric acid-modified Upjohn dihydroxylation of a resilient tetrasubstituted olefin. The developed route has exciting potential for the preparation of new forskolin analogues inaccessible by semisynthesis.

5.
Mol Cancer Ther ; 16(9): 1831-1842, 2017 09.
Article in English | MEDLINE | ID: mdl-28619751

ABSTRACT

Checkpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G2-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy. Some recently identified CHK1 inhibitors entered clinical trials in combination with DNA antimetabolites. Herein, we report synthesis and profiling of MU380, a nontrivial analogue of clinically profiled compound SCH900776 possessing the highly unusual N-trifluoromethylpyrazole motif, which was envisioned not to undergo metabolic oxidative dealkylation and thereby provide greater robustness to the compound. MU380 is a selective and potent inhibitor of CHK1 which sensitizes a variety of tumor cell lines to hydroxyurea or gemcitabine up to 10 times. MU380 shows extended inhibitory effects in cells, and unlike SCH900776, does not undergo in vivo N-dealkylation to the significantly less selective metabolite. Compared with SCH900776, MU380 in combination with GEM causes higher accumulation of DNA damage in tumor cells and subsequent enhanced cell death, and is more efficacious in the A2780 xenograft mouse model. Overall, MU380 represents a novel state-of-the-art CHK1 inhibitor with high potency, selectivity, and improved metabolic robustness to oxidative N-dealkylation. Mol Cancer Ther; 16(9); 1831-42. ©2017 AACR.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Checkpoint Kinase 1/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Biomarkers , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Dealkylation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Methylation , Mice , Molecular Structure , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
6.
Oncotarget ; 7(38): 62091-62106, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27556692

ABSTRACT

Treatment options for TP53-mutated lymphoid tumors are very limited. In experimental models, TP53-mutated lymphomas were sensitive to direct inhibition of checkpoint kinase 1 (Chk1), a pivotal regulator of replication. We initially tested the potential of the highly specific Chk1 inhibitor SCH900776 to synergize with nucleoside analogs (NAs) fludarabine, cytarabine and gemcitabine in cell lines derived from B-cell malignancies. In p53-proficient NALM-6 cells, SCH900776 added to NAs enhanced signaling towards Chk1 (pSer317/pSer345), effectively blocked Chk1 activation (Ser296 autophosphorylation), increased replication stress (p53 and γ-H2AX accumulation) and temporarily potentiated apoptosis. In p53-defective MEC-1 cell line representing adverse chronic lymphocytic leukemia (CLL), Chk1 inhibition together with NAs led to enhanced and sustained replication stress and significantly potentiated apoptosis. Altogether, among 17 tested cell lines SCH900776 sensitized four of them to all three NAs. Focusing further on MEC-1 and co-treatment of SCH900776 with fludarabine, we disclosed chromosome pulverization in cells undergoing aberrant mitoses. SCH900776 also increased the effect of fludarabine in a proportion of primary CLL samples treated with pro-proliferative stimuli, including those with TP53 disruption. Finally, we observed a fludarabine potentiation by SCH900776 in a T-cell leukemia 1 (TCL1)-driven mouse model of CLL. Collectively, we have substantiated the significant potential of Chk1 inhibition in B-lymphoid cells.


Subject(s)
B-Lymphocytes/cytology , Checkpoint Kinase 1/antagonists & inhibitors , Nucleosides/genetics , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cytarabine/administration & dosage , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Drug Screening Assays, Antitumor , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mice , Mice, Transgenic , Mitosis , Mutation , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL