Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 87(4): 652-657, 2020 04.
Article in English | MEDLINE | ID: mdl-32030791

ABSTRACT

Mutations in GBA1, the gene mutated in Gaucher disease, are a common genetic risk factor for Parkinson disease, although the penetrance is low. We performed [18 F]-fluorodopa positron emission tomography studies of 57 homozygous and heterozygous GBA1 mutation carriers (15 with parkinsonism) and 98 controls looking for early indications of dopamine loss using voxelwise analyses to identify group differences in striatal [18 F]-fluorodopa uptake (Ki ). Forty-eight subjects were followed longitudinally. Cross-sectional and longitudinal comparisons of Ki and Ki change found significant effects of Parkinson disease. However, at baseline and over time, striatal [18 F]-fluorodopa uptake in mutation carriers without parkinsonism did not significantly differ from controls. ANN NEUROL 2020;87:652-657.


Subject(s)
Dopamine/biosynthesis , Gaucher Disease/diagnostic imaging , Neostriatum/diagnostic imaging , Parkinson Disease/diagnostic imaging , Adult , Aged , Case-Control Studies , Dihydroxyphenylalanine/analogs & derivatives , Female , Gaucher Disease/genetics , Gaucher Disease/metabolism , Genetic Predisposition to Disease , Glucosylceramidase/genetics , Heterozygote , Homozygote , Humans , Longitudinal Studies , Male , Middle Aged , Mutation , Neostriatum/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Positron-Emission Tomography
2.
Cereb Cortex ; 25(7): 1878-88, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24464944

ABSTRACT

The processing of social information in the human brain is widely distributed neuroanatomically and finely orchestrated over time. However, a detailed account of the spatiotemporal organization of these key neural underpinnings of human social cognition remains to be elucidated. Here, we applied functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same participants to investigate spatial and temporal neural patterns evoked by viewing videos of facial muscle configurations. We show that observing the emergence of expressions elicits sustained blood oxygenation level-dependent responses in the superior temporal sulcus (STS), a region implicated in processing meaningful biological motion. We also found corresponding event-related changes in sustained MEG beta-band (14-30 Hz) oscillatory activity in the STS, consistent with the possible role of beta-band activity in visual perception. Dynamically evolving fearful and happy expressions elicited early (0-400 ms) transient beta-band activity in sensorimotor cortex that persisted beyond 400 ms, at which time it became accompanied by a frontolimbic spread (400-1000 ms). In addition, individual differences in sustained STS beta-band activity correlated with speed of emotion recognition, substantiating the behavioral relevance of these signals. This STS beta-band activity showed valence-specific coupling with the time courses of facial movements as they emerged into full-blown fearful and happy expressions (negative and positive coupling, respectively). These data offer new insights into the perceptual relevance and orchestrated function of the STS and interconnected pathways in social-emotion cognition.


Subject(s)
Cognition/physiology , Emotions/physiology , Facial Recognition/physiology , Frontal Lobe/physiology , Limbic System/physiology , Temporal Lobe/physiology , Adult , Beta Rhythm/physiology , Brain Mapping , Cerebrovascular Circulation/physiology , Evoked Potentials , Female , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Male , Neural Pathways/physiology , Neuropsychological Tests , Oxygen/blood , Photic Stimulation , Reaction Time/physiology
3.
Brain ; 135(Pt 8): 2440-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22843412

ABSTRACT

Mutations in GBA, the gene encoding glucocerebrosidase, the enzyme deficient in Gaucher disease, are common risk factors for Parkinson disease, as patients with Parkinson disease are over five times more likely to carry GBA mutations than healthy controls. Patients with GBA mutations generally have an earlier onset of Parkinson disease and more cognitive impairment than those without GBA mutations. We investigated whether GBA mutations alter the neurobiology of Parkinson disease, studying brain dopamine synthesis and resting regional cerebral blood flow in 107 subjects (38 women, 69 men). We measured dopamine synthesis with (18)F-fluorodopa positron emission tomography, and resting regional cerebral blood flow with H(2)(15)O positron emission tomography in the wakeful, resting state in four study groups: (i) patients with Parkinson disease and Gaucher disease (n = 7, average age = 56.6 ± 9.2 years); (ii) patients with Parkinson disease without GBA mutations (n = 11, 62.1 ± 7.1 years); (iii) patients with Gaucher disease without parkinsonism, but with a family history of Parkinson disease (n = 14, 52.6 ± 12.4 years); and (iv) healthy GBA-mutation carriers with a family history of Parkinson disease (n = 7, 50.1 ± 18 years). We compared each study group with a matched control group. Data were analysed with region of interest and voxel-based methods. Disease duration and Parkinson disease functional and staging scores were similar in the two groups with parkinsonism, as was striatal dopamine synthesis: both had greatest loss in the caudal striatum (putamen Ki loss: 44 and 42%, respectively), with less reduction in the caudate (20 and 18% loss). However, the group with both Parkinson and Gaucher diseases showed decreased resting regional cerebral blood flow in the lateral parieto-occipital association cortex and precuneus bilaterally. Furthermore, two subjects with Gaucher disease without parkinsonian manifestations showed diminished striatal dopamine. In conclusion, the pattern of dopamine loss in patients with both Parkinson and Gaucher disease was similar to sporadic Parkinson disease, indicating comparable damage in midbrain neurons. However, H(2)(15)O positron emission tomography studies indicated that these subjects have decreased resting activity in a pattern characteristic of diffuse Lewy body disease. These findings provide insight into the pathophysiology of GBA-associated parkinsonism.


Subject(s)
Cerebrovascular Circulation/physiology , Dopamine/biosynthesis , Glucosylceramidase/metabolism , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/enzymology , Positron-Emission Tomography , Adolescent , Adult , Aged , Female , Glucosylceramidase/genetics , Humans , Male , Middle Aged , Mutation/physiology , Parkinsonian Disorders/genetics , Positron-Emission Tomography/methods , Young Adult
4.
Article in English | MEDLINE | ID: mdl-33712377

ABSTRACT

BACKGROUND: The rs1344706 single nucleotide polymorphism in the ZNF804A gene has been associated with risk for psychosis in multiple genome-wide association studies, yet mechanisms underlying this association are not known. Given preclinical work suggesting an impact of ZNF804A on dopamine receptor gene transcription and clinical studies establishing dopaminergic dysfunction in patients with schizophrenia, we hypothesized that the ZNF804A risk single nucleotide polymorphism would be associated with variation in dopamine receptor availability in the human brain. METHODS: In this study, 72 healthy individuals genotyped for rs1344706 completed both [18F]fallypride and [11C]NNC-112 positron emission tomography scans to measure D2/D3 and D1 receptor availability, respectively. Genetic effects on estimates of binding potential for each ligand were tested first with canonical subject-specific striatal regions of interest analyses, followed by exploratory whole-brain voxelwise analyses to test for more localized striatal signals and for extrastriatal effects. RESULTS: Region of interest analyses revealed significantly less D2/D3 receptor availability in risk-allele homozygotes (TT) compared with non-risk allele carriers (G-allele carrier group: TG and GG) in the associative striatum and sensorimotor striatum, but no significant differences in striatal D1 receptor availability. CONCLUSIONS: These data suggest that ZNF804A genotype may be meaningfully linked to dopaminergic function in the human brain. The results also may provide information to guide future studies of ZNF804A-related mechanisms of schizophrenia risk.


Subject(s)
Genome-Wide Association Study , Receptors, Dopamine , Humans , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Brain/diagnostic imaging , Brain/metabolism , Genotype , Positron-Emission Tomography/methods , Dopamine/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
5.
Nat Commun ; 14(1): 6122, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777515

ABSTRACT

Foraging behavior requires weighing costs of time to decide when to leave one reward patch to search for another. Computational and animal studies suggest that striatal dopamine is key to this process; however, the specific role of dopamine in foraging behavior in humans is not well characterized. We use positron emission tomography (PET) imaging to directly measure dopamine synthesis capacity and D1 and D2/3 receptor availability in 57 healthy adults who complete a computerized foraging task. Using voxelwise data and principal component analysis to identify patterns of variation across PET measures, we show that striatal D1 and D2/3 receptor availability and a pattern of mesolimbic and anterior cingulate cortex dopamine function are important for adjusting the threshold for leaving a patch to explore, with specific sensitivity to changes in travel time. These findings suggest a key role for dopamine in trading reward benefits against temporal costs to modulate behavioral adaptions to changes in the reward environment critical for foraging.


Subject(s)
Dopamine , Receptors, Dopamine D2 , Adult , Animals , Humans , Receptors, Dopamine D2/metabolism , Reward , Corpus Striatum/metabolism , Positron-Emission Tomography/methods
6.
Nucleic Acids Res ; 35(Database issue): D566-71, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17130145

ABSTRACT

Protein interaction data exists in a number of repositories. Each repository has its own data format, molecule identifier and supplementary information. Michigan Molecular Interactions (MiMI) assists scientists searching through this overwhelming amount of protein interaction data. MiMI gathers data from well-known protein interaction databases and deep-merges the information. Utilizing an identity function, molecules that may have different identifiers but represent the same real-world object are merged. Thus, MiMI allows the users to retrieve information from many different databases at once, highlighting complementary and contradictory information. To help scientists judge the usefulness of a piece of data, MiMI tracks the provenance of all data. Finally, a simple yet powerful user interface aids users in their queries, and frees them from the onerous task of knowing the data format or learning a query language. MiMI allows scientists to query all data, whether corroborative or contradictory, and specify which sources to utilize. MiMI is part of the National Center for Integrative Biomedical Informatics (NCIBI) and is publicly available at: http://mimi.ncibi.org.


Subject(s)
Databases, Protein , Protein Interaction Mapping , Internet , User-Computer Interface
7.
Nutr Metab Cardiovasc Dis ; 18(1): 39-45, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17321119

ABSTRACT

BACKGROUND AND AIMS: In this study we assessed the prevalence of diagnosed type 2 diabetes and the quality of care during the period 1988-2000 in an Italian population. METHODS AND RESULTS: Two population-based surveys, using similar methods and centralized measurements, were conducted in 1988 and 2000 in a representative Italian area to identify people with known diabetes. The adjusted prevalence (reference, 2001 Italian population) was computed. The age- and sex-adjusted prevalence rates of diabetes in the population of Casale Monferrato were 2.13% (2.05-2.22) in 1988 and 3.07% (2.97-3.17) in 2000. In comparison with diabetic persons recruited in 1988 and independently of age and sex, persons recruited in 2000 had a lower likelihood of having HbA1c > or = 7.0% (OR=0.48; 0.42-0.56), diastolic blood pressure > or = 80 mmHg (OR=0.61; 0.49-0.75), LDL cholesterol > or = 2.59 mmol/l (OR=0.77; 0.63-0.93) and AER > or = 20 microg/min (OR=0.53; 0.45-0.61; they had a higher likelihood of having BMI > or = 25 kg/m(2) (OR=1.49; 1.2-1.74). However, 45.4% of patients still had HbA1c > or = 7.0%, 80% blood pressure > or = 130/80 mmHg and 79% LDL-cholesterol values > or =2.59 mmol/l. CONCLUSION: More than two-thirds of Italians with diabetes are now aged 65 years and more. The quality of control of glycemia, lipids and blood pressure improved and the prevalence of diabetic nephropathy decreased over time, although complete adherence to international guidelines has not yet been achieved.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/prevention & control , Hypoglycemic Agents/therapeutic use , Outcome and Process Assessment, Health Care , Quality of Health Care , Adolescent , Adult , Age Distribution , Age Factors , Aged , Aged, 80 and over , Blood Pressure/drug effects , Child , Child, Preschool , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Female , Glycated Hemoglobin/metabolism , Guideline Adherence , Health Care Surveys , Humans , Hypoglycemic Agents/pharmacology , Infant , Infant, Newborn , Italy/epidemiology , Lipids/blood , Male , Middle Aged , Odds Ratio , Practice Guidelines as Topic , Prevalence , Risk Assessment , Risk Factors , Sex Distribution , Sex Factors , Time Factors , Treatment Outcome
8.
Neuropsychopharmacology ; 42(11): 2232-2241, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28387222

ABSTRACT

Standard-of-care biological treatment of schizophrenia remains dependent upon antipsychotic medications, which demonstrate D2 receptor affinity and elicit variable, partial clinical responses via neural mechanisms that are not entirely understood. In the striatum, where D2 receptors are abundant, antipsychotic medications may affect neural function in studies of animals, healthy volunteers, and patients, yet the relevance of this to pharmacotherapeutic actions remains unresolved. In this same brain region, some individuals with schizophrenia may demonstrate phenotypes consistent with exaggerated dopaminergic signaling, including alterations in dopamine synthesis capacity; however, the hypothesis that dopamine system characteristics underlie variance in medication-induced regional blood flow changes has not been directly tested. We therefore studied a cohort of 30 individuals with schizophrenia using longitudinal, multi-session [15O]-water and [18F]-FDOPA positron emission tomography to determine striatal blood flow during active atypical antipsychotic medication treatment and after at least 3 weeks of placebo treatment, along with presynaptic dopamine synthesis capacity (ie, DOPA decarboxylase activity). Regional striatal blood flow was significantly higher during active treatment than during the placebo condition. Furthermore, medication-related increases in ventral striatal blood flow were associated with more robust amelioration of excited factor symptoms during active medication and with higher dopamine synthesis capacity. These data indicate that atypical medications enact measureable physiological alterations in limbic striatal circuitry that vary as a function of dopaminergic tone and may have relevance to aspects of therapeutic responses.


Subject(s)
Antipsychotic Agents/therapeutic use , Corpus Striatum , Dopamine/metabolism , Schizophrenia/drug therapy , Schizophrenia/pathology , Adolescent , Adult , Aged , Corpus Striatum/blood supply , Corpus Striatum/diagnostic imaging , Corpus Striatum/drug effects , Dihydroxyphenylalanine/analogs & derivatives , Dihydroxyphenylalanine/pharmacokinetics , Dose-Response Relationship, Drug , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen Radioisotopes/pharmacokinetics , Positron-Emission Tomography , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Statistics, Nonparametric , Water/pharmacology , Young Adult
9.
Neuron ; 90(1): 177-90, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26971947

ABSTRACT

When an organism receives a reward, it is crucial to know which of many candidate actions caused this reward. However, recent work suggests that learning is possible even when this most fundamental assumption is not met. We used novel reward-guided learning paradigms in two fMRI studies to show that humans deploy separable learning mechanisms that operate in parallel. While behavior was dominated by precise contingent learning, it also revealed hallmarks of noncontingent learning strategies. These learning mechanisms were separable behaviorally and neurally. Lateral orbitofrontal cortex supported contingent learning and reflected contingencies between outcomes and their causal choices. Amygdala responses around reward times related to statistical patterns of learning. Time-based heuristic mechanisms were related to activity in sensorimotor corticostriatal circuitry. Our data point to the existence of several learning mechanisms in the human brain, of which only one relies on applying known rules about the causal structure of the task.


Subject(s)
Amygdala/physiology , Choice Behavior/physiology , Learning/physiology , Mesencephalon/physiology , Prefrontal Cortex/physiology , Reward , Ventral Striatum/physiology , Adult , Brain , Brain Mapping , Cerebral Cortex/physiology , Female , Functional Neuroimaging , Heuristics , Humans , Magnetic Resonance Imaging , Male , Neural Pathways , Young Adult
10.
Neuropsychopharmacology ; 41(9): 2303-8, 2016 08.
Article in English | MEDLINE | ID: mdl-26924680

ABSTRACT

The synthesis of multiple amine neurotransmitters, such as dopamine, norepinephrine, serotonin, and trace amines, relies in part on DOPA decarboxylase (DDC, AADC), an enzyme that is required for normative neural operations. Because rare, loss-of-function mutations in the DDC gene result in severe enzymatic deficiency and devastating autonomic, motor, and cognitive impairment, DDC common genetic polymorphisms have been proposed as a source of more moderate, but clinically important, alterations in DDC function that may contribute to risk, course, or treatment response in complex, heritable neuropsychiatric illnesses. However, a direct link between common genetic variation in DDC and DDC activity in the living human brain has never been established. We therefore tested for this association by conducting extensive genotyping across the DDC gene in a large cohort of 120 healthy individuals, for whom DDC activity was then quantified with [(18)F]-FDOPA positron emission tomography (PET). The specific uptake constant, Ki, a measure of DDC activity, was estimated for striatal regions of interest and found to be predicted by one of five tested haplotypes, particularly in the ventral striatum. These data provide evidence for cis-acting, functional common polymorphisms in the DDC gene and support future work to determine whether such variation might meaningfully contribute to DDC-mediated neural processes relevant to neuropsychiatric illness and treatment.


Subject(s)
Dopa Decarboxylase/genetics , Dopa Decarboxylase/metabolism , Ventral Striatum/enzymology , Adult , Brain/diagnostic imaging , Brain/enzymology , Dopamine/metabolism , Female , Fluorodeoxyglucose F18 , Haplotypes , Humans , Male , Middle Aged , Polymorphism, Genetic , Positron-Emission Tomography , Ventral Striatum/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL