ABSTRACT
The coronavirus disease-2019 (COVID-19) pandemic has elucidated major limitations in the capacity of medical and research institutions to appropriately manage emerging infectious diseases. We can improve our understanding of infectious diseases by unveiling virus-host interactions through host range prediction and protein-protein interaction prediction. Although many algorithms have been developed to predict virus-host interactions, numerous issues remain to be solved, and the entire network remains veiled. In this review, we comprehensively surveyed algorithms used to predict virus-host interactions. We also discuss the current challenges, such as dataset biases toward highly pathogenic viruses, and the potential solutions. The complete prediction of virus-host interactions remains difficult; however, bioinformatics can contribute to progress in research on infectious diseases and human health.
ABSTRACT
Therapeutic light has been increasingly used in clinical dentistry for surgical ablation, disinfection, bio-stimulation, reduction in inflammation, and promotion of wound healing. Photodynamic therapy (PDT), a type of phototherapy, has been used to selectively destroy tumor cells. Antimicrobial PDT (a-PDT) is used to inactivate causative bacteria in infectious oral diseases, such as periodontitis. Several studies have reported that this minimally invasive technique has favorable therapeutic outcomes with a low probability of adverse effects. PDT is based on the photochemical reaction between light, a photosensitizer, and oxygen, which affects its efficacy. Low-power lasers have been predominantly used in phototherapy for periodontal treatments, while light-emitting diodes (LEDs) have received considerable attention as a novel light source in recent years. LEDs can emit broad wavelengths of light, from infrared to ultraviolet, and the lower directivity of LED light appears to be suitable for plaque control over large and complex surfaces. In addition, LED devices are small, lightweight, and less expensive than lasers. Although limited evidence exists on LED-based a-PDT for periodontitis, a-PDT using red or blue LED light could be effective in attenuating bacteria associated with periodontal diseases. LEDs have the potential to provide a new direction for light therapy in periodontics.
ABSTRACT
Clinical isolates of drug-resistant (isoniazid and/or rifampicin-resistant) Mycobacterium tuberculosis were obtained from 254 patients diagnosed with drug-resistant tuberculosis in Japan from April 2015 to March 2017 in National Hospital Organization hospitals. The 254 patients were approximately 32% of all 795 patients who were diagnosed with culture-confirmed drug-resistant tuberculosis from 2015 to 2016 nationwide in Japan. The whole-genome sequences of all the isolates from the 254 patients and the lineages of these isolates were determined, and phylogenetic trees were constructed based on single nucleotide polymorphism concatemers. Of these patients, 202 (79.5%) were born in Japan and 52 (20.5%) were born elsewhere. Of the 254 drug-resistant isolates, 54 (21.3%) were multidrug resistant, being resistant to both isoniazid and rifampicin. The percentages of multidrug-resistant isolates were significantly higher in foreign-born (38.5% [20/52]) than Japanese-born patients (16.8% [34/202]). Of the 54 multidrug-resistant isolates, nine were extensively drug resistant, which were all obtained from Japanese-born patients. Five extensively drug-resistant isolates were obtained from patients with incipient tuberculosis. A significant number of multidrug-resistant M. tuberculosis strains were isolated from foreign-born patients from Asian countries that have a high tuberculosis burden. Foreign-derived isolates affect the nationwide genetic diversity of drug-resistant M. tuberculosis in Japan. Extensively drug-resistant M. tuberculosis isolates were transmitted among the Japanese population. IMPORTANCE The incidence rate of tuberculosis (TB) in Japan was 11.5 per 100,000 of the population in 2019. Of TB patients in Japan, 61.1% were aged >70 years, and 10.7% were born outside Japan, mostly in Asian countries with a high burden of tuberculosis. Of the tuberculosis patients in the present study, 5.4% and 1.0% showed resistance to isoniazid and rifampicin, respectively, and 0.7% were multidrug resistant. The objective of this study was to clarify the molecular epidemiological properties of drug-resistant tuberculosis in Japan. Molecular epidemiology provides several clues to inform potential measures to control drug-resistant tuberculosis in Japan.