Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Biochem Biophys Res Commun ; 491(3): 681-686, 2017 09 23.
Article in English | MEDLINE | ID: mdl-28756225

ABSTRACT

Cancer cells have an unusually high requirement for the central and intermediary metabolite nicotinamide adenine dinucleotide (NAD+), and NAD+ depletion ultimately results in cell death. The rate limiting step within the NAD+ salvage pathway required for converting nicotinamide to NAD+ is catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). Targeting NAMPT has been investigated as an anti-cancer strategy, and several highly selective small molecule inhibitors have been found to potently inhibit NAMPT in cancer cells, resulting in NAD+ depletion and cytotoxicity. To identify mechanisms that could cause resistance to NAMPT inhibitor treatment, we generated a human fibrosarcoma cell line refractory to the highly potent and selective NAMPT small molecule inhibitor, GMX1778. We uncovered novel and unexpected mechanisms of resistance including significantly increased expression of quinolinate phosphoribosyl transferase (QPRT), a key enzyme in the de novo NAD+ synthesis pathway. Additionally, exome sequencing of the NAMPT gene in the resistant cells identified a single heterozygous point mutation that was not present in the parental cell line. The combination of upregulation of the NAD+ de novo synthesis pathway through QPRT over-expression and NAMPT mutation confers resistance to GMX1778, but the cells are only partially resistant to next-generation NAMPT inhibitors. The resistance mechanisms uncovered herein provide a potential avenue to continue exploration of next generation NAMPT inhibitors to treat neoplasms in the clinic.


Subject(s)
Cyanides/administration & dosage , Cytokines/antagonists & inhibitors , Cytokines/genetics , Drug Resistance, Neoplasm/drug effects , Fibrosarcoma/drug therapy , Fibrosarcoma/metabolism , Guanidines/administration & dosage , NAD/biosynthesis , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/genetics , Anilides , Apoptosis/drug effects , Apoptosis/genetics , Arginine/analogs & derivatives , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Fibrosarcoma/genetics , Humans , Mutation/genetics , NAD/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Treatment Outcome
2.
BMC Cancer ; 17(1): 399, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28578655

ABSTRACT

BACKGROUND: Venetoclax (ABT-199), a first-in-class orally bioavailable BCL-2-selective inhibitor, was recently approved by the FDA for use in patients with 17p-deleted chronic lymphocytic leukemia who have received prior therapy. It is also being evaluated in numerous clinical trials for treating patients with various hematologic malignancies. As with any targeted cancer therapy, it is critically important to identify potential mechanisms of resistance, both for patient stratification and developing strategies to overcome resistance, either before it develops or as it emerges. METHODS: In order to gain a more comprehensive insight into the nature of venetoclax resistance mechanisms, we evaluated the changes in the BCL-2 family members at the genetic and expression levels in seven different venetoclax-resistant derived leukemia and lymphoma cell lines. RESULTS: Gene and protein expression analyses identified a number of different alterations in the expression of pro- and anti-apoptotic BCL-2 family members. In the resistant derived cells, an increase in either or both the anti-apoptotic proteins BCL-XL or MCL-1, which are not targeted by venetoclax was observed, and either concomitant or exclusive with a decrease in one or more pro-apoptotic proteins. In addition, mutational analysis also revealed a mutation in the BH3 binding groove (F104L) that could potentially interfere with venetoclax-binding. Not all changes may be causally related to venetoclax resistance and may only be an epiphenomenon. For resistant cell lines showing elevations in BCL-XL or MCL-1, strong synergistic cell killing was observed when venetoclax was combined with either BCL-XL- or MCL-1-selective inhibitors, respectively. This highlights the importance of BCL-XL- and MCL-1 as causally contributing to venetoclax resistance. CONCLUSIONS: Overall our study identified numerous changes in multiple resistant lines; the changes were neither mutually exclusive nor universal across the cell lines tested, thus exemplifying the complexity and heterogeneity of potential resistance mechanisms. Identifying and evaluating their contribution has important implications for both patient selection and the rational development of strategies to overcome resistance.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia/drug therapy , Lymphoma/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Lineage/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia/genetics , Leukemia/pathology , Lymphoma/genetics , Lymphoma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-X Protein/genetics
3.
Alzheimers Dement (Amst) ; 14(1): e12354, 2022.
Article in English | MEDLINE | ID: mdl-36187194

ABSTRACT

Introduction: The acceleration of biological aging is a risk factor for Alzheimer's disease (AD). Here, we performed weighted gene co-expression network analysis (WGCNA) to identify modules and dysregulated genesinvolved in biological aging in AD. Methods: We performed WGCNA to identify modules associated with biological clocks and hub genes of the module with the highest module significance. In addition, we performed differential expression analysis and association analysis with AD biomarkers. Results: WGCNA identified five modules associated with biological clocks, with the module designated as "purple" showing the strongest association. Functional enrichment analysis revealed that the purple module was related to cell migration and death. Ten genes were identified as hub genes in purple modules, of which CX3CR1 was downregulated in AD and low levels of CX3CR1 expression were associated with AD biomarkers. Conclusion: Network analysis identified genes associated with biological clocks, which suggests the genetic architecture underlying biological aging in AD. Highlights: Examine links between Alzheimer's disease (AD) peripheral transcriptome and biological aging changes.Weighted gene co-expression network analysis (WGCNA) found five modules related to biological aging.Among the hub genes of the module, CX3CR1 was downregulated in AD.The CX3CR1 expression level was associated with cognitive performance and brain atrophy.

4.
Clin Epigenetics ; 13(1): 191, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654479

ABSTRACT

BACKGROUND: Identifying biomarkers associated with Alzheimer's disease (AD) progression may enable patient enrichment and improve clinical trial designs. Epigenome-wide association studies have revealed correlations between DNA methylation at cytosine-phosphate-guanine (CpG) sites and AD pathology and diagnosis. Here, we report relationships between peripheral blood DNA methylation profiles measured using Infinium® MethylationEPIC BeadChip and AD progression in participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. RESULTS: The rate of cognitive decline from initial DNA sampling visit to subsequent visits was estimated by the slopes of the modified Preclinical Alzheimer Cognitive Composite (mPACC; mPACCdigit and mPACCtrailsB) and Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) plots using robust linear regression in cognitively normal (CN) participants and patients with mild cognitive impairment (MCI), respectively. In addition, diagnosis conversion status was assessed using a dichotomized endpoint. Two CpG sites were significantly associated with the slope of mPACC in CN participants (P < 5.79 × 10-8 [Bonferroni correction threshold]); cg00386386 was associated with the slope of mPACCdigit, and cg09422696 annotated to RP11-661A12.5 was associated with the slope of CDR-SB. No significant CpG sites associated with diagnosis conversion status were identified. Genes involved in cognition and learning were enriched. A total of 19, 13, and 5 differentially methylated regions (DMRs) associated with the slopes of mPACCtrailsB, mPACCdigit, and CDR-SB, respectively, were identified by both comb-p and DMRcate algorithms; these included DMRs annotated to HOXA4. Furthermore, 5 and 19 DMRs were associated with conversion status in CN and MCI participants, respectively. The most significant DMR was annotated to the AD-associated gene PM20D1 (chr1: 205,818,956 to 205,820,014 [13 probes], Sidak-corrected P = 7.74 × 10-24), which was associated with both the slope of CDR-SB and the MCI conversion status. CONCLUSION: Candidate CpG sites and regions in peripheral blood were identified as associated with the rate of cognitive decline in participants in the ADNI cohort. While we did not identify a single CpG site with sufficient clinical utility to be used by itself due to the observed effect size, a biosignature composed of DNA methylation changes may have utility as a prognostic biomarker for AD progression.


Subject(s)
Alzheimer Disease/genetics , DNA Methylation/genetics , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Biomarkers/analysis , Biomarkers/blood , Cognitive Dysfunction/genetics , Cohort Studies , DNA Methylation/physiology , Disease Progression , Female , Humans , Male
5.
Sci Data ; 8(1): 296, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753956

ABSTRACT

With the rapid advancement of sequencing technologies, next generation sequencing (NGS) analysis has been widely applied in cancer genomics research. More recently, NGS has been adopted in clinical oncology to advance personalized medicine. Clinical applications of precision oncology require accurate tests that can distinguish tumor-specific mutations from artifacts introduced during NGS processes or data analysis. Therefore, there is an urgent need to develop best practices in cancer mutation detection using NGS and the need for standard reference data sets for systematically measuring accuracy and reproducibility across platforms and methods. Within the SEQC2 consortium context, we established paired tumor-normal reference samples and generated whole-genome (WGS) and whole-exome sequencing (WES) data using sixteen library protocols, seven sequencing platforms at six different centers. We systematically interrogated somatic mutations in the reference samples to identify factors affecting detection reproducibility and accuracy in cancer genomes. These large cross-platform/site WGS and WES datasets using well-characterized reference samples will represent a powerful resource for benchmarking NGS technologies, bioinformatics pipelines, and for the cancer genomics studies.


Subject(s)
Exome Sequencing , Genome, Human , Neoplasms/genetics , Whole Genome Sequencing , Benchmarking , Cell Line, Tumor , Computational Biology , Genomics , Humans , Precision Medicine
6.
Nat Biotechnol ; 39(9): 1141-1150, 2021 09.
Article in English | MEDLINE | ID: mdl-34504346

ABSTRACT

Clinical applications of precision oncology require accurate tests that can distinguish true cancer-specific mutations from errors introduced at each step of next-generation sequencing (NGS). To date, no bulk sequencing study has addressed the effects of cross-site reproducibility, nor the biological, technical and computational factors that influence variant identification. Here we report a systematic interrogation of somatic mutations in paired tumor-normal cell lines to identify factors affecting detection reproducibility and accuracy at six different centers. Using whole-genome sequencing (WGS) and whole-exome sequencing (WES), we evaluated the reproducibility of different sample types with varying input amount and tumor purity, and multiple library construction protocols, followed by processing with nine bioinformatics pipelines. We found that read coverage and callers affected both WGS and WES reproducibility, but WES performance was influenced by insert fragment size, genomic copy content and the global imbalance score (GIV; G > T/C > A). Finally, taking into account library preparation protocol, tumor content, read coverage and bioinformatics processes concomitantly, we recommend actionable practices to improve the reproducibility and accuracy of NGS experiments for cancer mutation detection.


Subject(s)
Benchmarking , Exome Sequencing/standards , Neoplasms/genetics , Sequence Analysis, DNA/standards , Whole Genome Sequencing/standards , Cell Line , Cell Line, Tumor , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Neoplasms/pathology , Reproducibility of Results
7.
Nat Biotechnol ; 39(9): 1151-1160, 2021 09.
Article in English | MEDLINE | ID: mdl-34504347

ABSTRACT

The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.


Subject(s)
Benchmarking , Breast Neoplasms/genetics , DNA Mutational Analysis/standards , High-Throughput Nucleotide Sequencing/standards , Whole Genome Sequencing/standards , Cell Line, Tumor , Datasets as Topic , Germ Cells , Humans , Mutation , Reference Standards , Reproducibility of Results
8.
Clin Epigenetics ; 12(1): 84, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32539856

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a chronic progressive neurodegenerative disease impacting an estimated 44 million adults worldwide. The causal pathology of AD (accumulation of amyloid-beta and tau), precedes hallmark symptoms of dementia by more than a decade, necessitating development of early diagnostic markers of disease onset, particularly for new drugs that aim to modify disease processes. To evaluate differentially methylated positions (DMPs) as novel blood-based biomarkers of AD, we used a subset of 653 individuals with peripheral blood (PB) samples in the Alzheimer's disease Neuroimaging Initiative (ADNI) consortium. The selected cohort of AD, mild cognitive impairment (MCI), and age-matched healthy controls (CN) all had imaging, genetics, transcriptomics, cerebrospinal protein markers, and comprehensive clinical records, providing a rich resource of concurrent multi-omics and phenotypic information on a well-phenotyped subset of ADNI participants. RESULTS: In this manuscript, we report cross-diagnosis differential peripheral DNA methylation in a cohort of AD, MCI, and age-matched CN individuals with longitudinal DNA methylation measurements. Epigenome-wide association studies (EWAS) were performed using a mixed model with repeated measures over time with a P value cutoff of 1 × 10-5 to test contrasts of pairwise differential peripheral methylation in AD vs CN, AD vs MCI, and MCI vs CN. The most highly significant differentially methylated loci also tracked with Mini Mental State Examination (MMSE) scores. Differentially methylated loci were enriched near brain and neurodegeneration-related genes (e.g., BDNF, BIN1, APOC1) validated using the genotype tissue expression project portal (GTex). CONCLUSIONS: Our work shows that peripheral differential methylation between age-matched subjects with AD relative to healthy controls will provide opportunities to further investigate and validate differential methylation as a surrogate of disease. Given the inaccessibility of brain tissue, the PB-associated methylation marks may help identify the stage of disease and progression phenotype, information that would be central to bringing forward successful drugs for AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , DNA Methylation/genetics , Neuroimaging/methods , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Case-Control Studies , Cognitive Dysfunction/blood , Cognitive Dysfunction/cerebrospinal fluid , Diagnosis, Differential , Disease Progression , Early Diagnosis , Epigenomics/methods , Female , Genotype , Humans , Longitudinal Studies , Male , Mental Status and Dementia Tests/standards , Phenotype , Transcriptome/genetics
9.
Clin Cancer Res ; 13(9): 2728-37, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17473206

ABSTRACT

PURPOSE: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. EXPERIMENTAL DESIGN: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. RESULTS: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with K(i)s of 5.2 and 2.9 nmol/L, respectively. The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1 breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d x 10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. CONCLUSIONS: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.


Subject(s)
Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Administration, Oral , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Biological Availability , Blood-Brain Barrier/metabolism , Cell Line, Tumor , DNA Damage , Disease Models, Animal , Dogs , Drug Synergism , Female , Haplorhini , Humans , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred Strains , Xenograft Model Antitumor Assays
10.
PLoS One ; 13(4): e0195325, 2018.
Article in English | MEDLINE | ID: mdl-29614084

ABSTRACT

Anti-drug antibody formation occurs with most biological agents across disease states, but the mechanism by which they are formed is unknown. The formation of anti-drug antibodies to adalimumab (AAA) may decrease its therapeutic effects in some patients. HLA alleles have been reported to be associated with autoantibody formation against interferons and other TNF inhibitors, but not adalimumab. We analyzed samples from 634 subjects with either rheumatoid arthritis (RA) or hidradenitis suppurativa (HS): 37 subjects (17 RA and 20 HS) developed AAA (AAA+) during adalimumab treatment and 597 subjects (348 RA, 249 HS) did not develop AAA (AAA-) during the clinical trials. Using next-generation sequencing-based HLA typing, we identified three protective HLA alleles (HLA-DQB1*05, HLA-DRB1*01,and HLA-DRB1*07) that were less prevalent in AAA+ than AAA-subjects (ORs: 0.4, 0.25 and 0.28, respectively; and P values: 0.012, 0.012 and 0.018, respectively) and two risk HLA alleles (HLA-DRB1*03 and HLA-DRB1*011) that were more abundant in AAA+ than AAA-subjects (ORs: 2.52, and 2.64, respectively; and P values: 0.006 and 0.019). Similar to the finding of Billiet et al. who found that carriage of the HLA-DRB1*03 allele was more prevalent in those with anti-infliximab antibodies (OR = 3.6, p = 0.002, 95% CI: [1.5,8.6]).), we found HLA-DRB1*03 allele was also more prevalent in anti-adalimumab positive (OR = 2.52, p = 0.006, 95% CI: [1.37,4.63]). The results suggest that specific HLA alleles may play a key role in developing AAAs in RA and HS patients treated with adalimumab.


Subject(s)
Adalimumab/immunology , Anti-Inflammatory Agents/immunology , Antirheumatic Agents/immunology , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Adalimumab/therapeutic use , Alleles , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , HLA-DQ beta-Chains/blood , Hidradenitis Suppurativa/blood , Hidradenitis Suppurativa/drug therapy , Hidradenitis Suppurativa/genetics , Hidradenitis Suppurativa/immunology , Histocompatibility Testing , Humans , Pharmacogenomic Variants , Sequence Analysis
11.
Eur J Pharmacol ; 659(2-3): 161-8, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21458448

ABSTRACT

The behavioral effects evoked by cannabinoids are primarily mediated by the CB(1) and CB(2) cannabinoid receptor subtypes. In vitro pharmacology of cannabinoid receptors has been elucidated using recombinant expression systems expressing either CB(1) or CB(2) receptors, with limited characterization in native cell lines endogenously expressing both CB(1) and CB(2) receptors. In the current study, we report the molecular and pharmacological characterization of the F-11 cell line, a hybridoma of rat dorsal root ganglion neurons and mouse neuroblastoma (N18TG2) cells, reported to endogenously express both cannabinoid receptors. The present study revealed that both receptors are of mouse origin in F-11 cells, and describes the relative gene expression levels between the two receptors. Pharmacological characterization of the F-11 cell line using cannabinoid agonists and antagonists indicated that the functional responses to these cannabinoid ligands are mainly mediated by CB(1) receptors. The non-selective cannabinoid ligands CP 55,940 and WIN 55212-2 are potent agonists and their efficacies in adenylate cyclase and MAPK assays are inhibited by the CB(1) selective antagonist SR141716A (SR1), but not by the CB(2) selective antagonist SR144528 (SR2). The endocannabinoid ligand 2AG, although not active in adenylate cyclase assays, was a potent activator of MAPK signaling in F-11 cells. The analysis of CB(1) and CB(2) receptor gene expression and the characterization of cannabinoid receptor pharmacology in the F-11 cell line demonstrate that it can be used as a tool for interrogating the endogenous signal transduction of cannabinoid receptor subtypes.


Subject(s)
Cell Line/drug effects , Cell Line/metabolism , Ganglia, Spinal/cytology , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/genetics , Adenylyl Cyclases/metabolism , Animals , Base Sequence , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Dosage/genetics , Gene Expression/drug effects , Humans , Mice , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Data , RNA, Messenger/genetics , Rats , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL