Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Publication year range
1.
Phytopathology ; 114(5): 971-981, 2024 May.
Article in English | MEDLINE | ID: mdl-38376984

ABSTRACT

Nodule-specific cysteine-rich (NCR) peptides, encoded in the genome of the Mediterranean legume Medicago truncatula (barrelclover), are known to regulate plant-microbe interactions. A subset of computationally derived 20-mer peptide fragments from 182 NCR peptides was synthesized to identify those with activity against the unculturable vascular pathogen associated with citrus greening disease, 'Candidatus Liberibacter asiaticus' (CLas). Grounded in a design of experiments framework, we evaluated the peptides in a screening pipeline involving three distinct assays: a bacterial culture assay with Liberibacter crescens, a CLas-infected excised citrus leaf assay, and an assay to evaluate effects on bacterial acquisition by the nymphal stage of hemipteran vector Diaphorina citri. A subset of the 20-mer NCR peptide fragments inhibits both CLas growth in citrus leaves and CLas acquisition by D. citri. Two peptides induced higher levels of D. citri mortality. These findings reveal 20-mer NCR peptides as a new class of plant-derived biopesticide molecules to control citrus greening disease.


Subject(s)
Citrus , Medicago truncatula , Peptides , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/prevention & control , Citrus/microbiology , Peptides/chemistry , Peptides/metabolism , Medicago truncatula/microbiology , Cysteine , Hemiptera/microbiology , Biological Control Agents , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Liberibacter/genetics , Animals , Rhizobiaceae/genetics
2.
Phytopathology ; 113(7): 1171-1179, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36750555

ABSTRACT

Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.


Subject(s)
Citrus , Rhizobiaceae , Citrus/microbiology , Liberibacter , Plant Diseases/prevention & control , Plant Diseases/microbiology , Trees
3.
Phytopathology ; 112(1): 69-75, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33988458

ABSTRACT

Huanglongbing, or citrus greening disease, is the most serious disease of citrus worldwide and is associated with plant infection by 'Candidatus Liberibacter asiaticus' (CLas) and other Liberibacter species. CLas is transmitted by Diaphorina citri, the Asian citrus psyllid, in a circulative propagative manner. Circulative propagative transmission is a complex process comprising at least three steps: movement of the pathogen into vector tissues, translocation and replication of the pathogen within the vector host, and pathogen inoculation of a new host by the vector. In this work, we describe an excised leaf CLas acquisition assay, which enables precise measurements of CLas acquisition by D. citri in a streamlined laboratory assay. Briefly, healthy fourth and fifth instar D. citri nymphs acquire CLas from excised CLas-positive leaves, where the insects also complete their developmental cycle. CLas titer in the resulting adults is measured using quantitative PCR and CLas-specific 16S rRNA gene primers. We observed positive correlations between CLas titer in each leaf replicate and the CLas titer that developed in the insects after acquisition (rs = 0.78; P = 0.0002). This simple assay could be used to detect CLas acquisition phenotypes and their underlying genotypes, facilitate assessment of plant factors that impact acquisition, and screen for compounds that interfere with CLas acquisition by delivering these compounds through the excised leaf.


Subject(s)
Citrus , Hemiptera , Rhizobiaceae , Animals , Liberibacter , Plant Diseases , Plant Leaves , RNA, Ribosomal, 16S , Rhizobiaceae/genetics
4.
Phytopathology ; 112(1): 101-115, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34738832

ABSTRACT

The Asian citrus psyllid (Diaphorina citri) is a pest of citrus and the primary insect vector of the bacterial pathogen, 'Candidatus Liberibacter asiaticus' (CLas), which is associated with citrus greening disease. The citrus relative Murraya paniculata (orange jasmine) is a host plant of D. citri but is more resistant to CLas compared with all tested Citrus genotypes. The effect of host switching of D. citri between Citrus medica (citron) and M. paniculata plants on the acquisition and transmission of CLas was investigated. The psyllid CLas titer and the proportion of CLas-infected psyllids decreased in the generations after transfer from CLas-infected citron to healthy M. paniculata plants. Furthermore, after several generations of feeding on M. paniculata, pathogen acquisition (20 to 40% reduction) and transmission rates (15 to 20% reduction) in psyllids transferred to CLas-infected citron were reduced compared with psyllids continually maintained on infected citron. Top-down (difference gel electrophoresis) and bottom-up (shotgun MS/MS) proteomics methods were used to identify changes in D. citri protein expression resulting from host plant switching between Citrus macrophylla and M. paniculata. Changes in expression of insect metabolism, immunity, and cytoskeleton proteins were associated with host plant switching. Both transient and sustained feeding on M. paniculata induced distinct patterns of protein expression in D. citri compared with psyllids reared on C. macrophylla. The results point to complex interactions that affect vector competence and may lead to strategies to control the spread of citrus greening disease.


Subject(s)
Citrus , Hemiptera , Rhizobiaceae , Animals , Liberibacter , Plant Diseases , Proteome , Tandem Mass Spectrometry
5.
Hereditas ; 156: 32, 2019.
Article in English | MEDLINE | ID: mdl-31641342

ABSTRACT

BACKGROUND: Identification of high resolving DNA-based markers is of paramount importance to unlock the potential of genetic diversity and selection of unique accessions of Capsicum annuum L., within Cross River and Ebonyi States of Nigeria, for breeding and conservation. Therefore, we comparatively explored the effectiveness of start codon targeted (SCoT) and directed amplified minisatellite DNA (DAMD) markers for diversity analysis of the accessions. Fifteen accessions were collected for DNA extraction and amplifications with the markers. RESULTS: Dendrograms from SCoT and DAMD categorized the accessions into five and three genetic groups, respectively, while the principal component analysis identified five genetic clusters, each from the markers. The average values of allele, gene diversity and polymorphic information content detected with SCoT and DAMD demonstrate that the two markers were effective and efficient, especially, SCoT in genetic diversity study of the accessions of pepper. Number of polymorphic loci (NPL) and percentage polymorphic loci (PPL) from SCoT (NPL = 64, PPL = 80.00-95.73%) and DAMD (NPL = 56, PPL = 53.33-86.67%) were high, but higher in SCoT markers. Other effective genetic parameters (effective number of alleles, Nei's genetic diversity and Shannon's information indices) identified with the two marker systems elucidated the allelic richness, rich genetic diversity within the populations and informative nature of the markers, especially SCoT. The intraspecific genetic diversity, interspecific genetic diversity, and coefficient of differentiation obtained with SCoT and DAMD further exposed the genetic structure with more genetic divergence within than among the populations of the accessions. Estimate of gene flow from the SCoT markers was 3.8375 and 0.6.2042 for the DAMD markers. The estimate of gene flow values from the markers indicated extensiveness with SCoT (Nm = 3.8375) and extremely extensive with DAMD (Nm = 6.2042) among the populations. CONCLUSION: This study shows that SCoT markers may be more useful and informative than DAMD in measuring genetic diversity and differentiation of the accessions of the genus Capsicum. Genetic parameters obtained with SCoT showed that the accessions from Cross River were more genetically diverse than the ones from Ebonyi State. Therefore, SCoT may be a preferred marker in evaluating genetic diversity for improvement and conservation of this spicy crop, C. capsicum.


Subject(s)
Capsicum/genetics , Codon, Initiator , Genetic Variation , Genetics, Population , Minisatellite Repeats , Alleles , Gene Flow , Genetic Markers , Nigeria
SELECTION OF CITATIONS
SEARCH DETAIL