ABSTRACT
The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.
Subject(s)
Carbon Cycle , Ecosystem , Plants/metabolism , Water Cycle , Carbon Dioxide/metabolism , Climate , Datasets as Topic , Humidity , Plants/classification , Principal Component AnalysisABSTRACT
A short period of exposure to elevated CO2 is known to decrease evapotranspiration via stomatal closure. Based on theoretical evaluation of a canopy transpiration model, we hypothesized that this decrease in the evapotranspiration of rice under elevated CO2 was greater under higher temperature conditions due to an increased sensitivity of transpiration to changes in CO2 induced by the greater vapour pressure deficit. In a temperature gradient chamber-based experiment, a 200 ppm increase in CO2 concentration led to 0.4 mm (-7%) and 1.5 mm (-15%) decreases in 12 h evapotranspiration under ambient temperature and high temperature (+3.7°C) conditions, respectively. Model simulations revealed that the greater vapour pressure deficit under higher temperature conditions explained the variations in the reduction of evapotranspiration observed under elevated CO2 levels between the temperature treatments. Our study suggests the utility of a simple modelling framework for mechanistic understanding of evapotranspiration and crop energy balance system under changing environmental conditions.
Subject(s)
Carbon Dioxide , Oryza , Plant Transpiration , Oryza/physiology , Oryza/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Plant Transpiration/physiology , Temperature , Vapor Pressure , Plant Stomata/physiology , Plant Stomata/drug effects , Models, Biological , Atmosphere/chemistry , Hot TemperatureABSTRACT
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.
Subject(s)
Ecosystem , Taiga , Carbon , Carbon Dioxide , Tundra , Methane , Carbon CycleABSTRACT
Direct measurements of ecophysiological processes such as leaf photosynthesis are often hampered due to the excessive time required for gas-exchange measurements and the limited availability of multiple gas analyzers. Although recent advancements in commercially available instruments have improved the ability to take measurements more conveniently, the amount of time required for each plant sample to acclimate to chamber conditions has not been sufficiently reduced. Here we describe a system of multiple gas-exchange chambers coupled with a laser spectrometer that employs tunable diode laser absorption spectroscopy (TDLAS) to measure leaf photosynthesis, stomatal conductance, and mesophyll conductance. Using four gas-exchange chambers minimizes the time loss associated with acclimation for each leaf sample. System operation is semiautomatic, and leaf temperature, humidity, and CO2 concentration can be regulated and monitored remotely by a computer system. The preliminary results with rice leaf samples demonstrated that the system is capable of high-throughput measurements, which is necessary to obtain better representativeness of the ecophysiological characteristics of plant samples.
Subject(s)
Mesophyll Cells/physiology , Oryza/physiology , Photosynthesis , Plant Leaves/physiology , Plant Stomata/physiology , Spectrum Analysis/methods , Botany/methodsABSTRACT
Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO2 concentration ([CO2 ]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high-yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO2 ] (A-CO2 and E-CO2 , respectively) via leaf ecophysiological parameters derived from a free-air CO2 enrichment (FACE) experiment. Takanari had 4%-5% higher evapotranspiration than Koshihikari under both A-CO2 and E-CO2 , and E-CO2 decreased evapotranspiration of both varieties by 4%-6%. Therefore, if Takanari was cultivated under future [CO2 ] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO2 ] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%-40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high-stomatal conductance can play a key role in enhancing productivity and moderating heat-induced damage to grain quality in the coming decades, without significantly increasing crop water use.
Subject(s)
Carbon Dioxide/pharmacology , Oryza/drug effects , Oryza/physiology , Photosynthesis/drug effects , Water/metabolism , Plant Leaves/physiology , TemperatureABSTRACT
The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.
Subject(s)
Light , Sphagnopsida/physiology , Stress, Physiological/radiation effects , Wetlands , Alaska , Arctic Regions , Energy MetabolismABSTRACT
Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature-ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive temperature range. We find thresholds to the global temperature-ecosystem respiration relationship at high and low air temperatures and mid soil temperatures, which represent transitions in the temperature dependence and sensitivity of ecosystem respiration. Annual ecosystem respiration rates show a markedly reduced temperature dependence and sensitivity compared to half-hourly rates, and a single mid-temperature threshold for both air and soil temperature. Our study indicates a distinction in the influence of environmental factors, including temperature, on ecosystem respiration between latitudinal and climate gradients at short (half-hourly) and long (annual) timescales. Such climatological differences in the temperature sensitivity of ecosystem respiration have important consequences for the terrestrial net carbon sink under ongoing climate change.
Subject(s)
Carbon Cycle , Ecosystem , Respiration , Soil , TemperatureABSTRACT
Enhancing crop yield response to elevated CO2 concentrations (E-[CO2]) is an important adaptation measure to climate change. A high-yielding indica rice cultivar "Takanari" has recently been identified as a potential candidate for high productivity in E-[CO2] resulting from its large sink and source capacities. To fully utilize these traits, nitrogen should play a major role, but it is unknown how N levels influence the yield response of Takanari to E-[CO2]. We therefore compared grain yield and quality of Takanari with those of Koshihikari, a standard japonica cultivar, in response to Free-Air CO2 enrichment (FACE, +200 µmol mol-1) under three N levels (0, 8, and 12 g m-2) over three seasons. The biomass of both cultivars increased under E-[CO2] at all N levels; however, the harvest index decreased under E-[CO2] in the N-limited treatment for Koshihikari but not for Takanari. The decreased harvest index of Koshihikari resulted from limited enhancement of spikelet number under N-limitation. In contrast, spikelet number increased in E-[CO2] in Takanari even without N application, resulting in significant yield enhancement, averaging 18% over 3 years, whereas Koshihikari exhibited virtually no increase in yield in E-[CO2] under the N-limited condition. Grain appearance quality of Koshihikari was severely reduced by E-[CO2], most notably in N-limited and hot conditions, by a substantial increase in chalky grain, but chalky grain % did not increase in E-[CO2] even without N fertilizer. These results indicated that Takanari could retain its high yield advantage over Koshihikari with limited increase in chalkiness even under limited N conditions and that it could be a useful genetic resource for improving N use efficiency under E-[CO2].